RESUMEN
Dermal allyl isothiocyanate (AITC) administration and whole-body heat stress (WBHS) are two challenge models that are used to evaluate physiological mechanisms of vasodilation and pharmacological activity in humans. Their exact vasodilatory mechanisms in humans are not fully elucidated but are likely to be nitric oxide (NO)-mediated. This study aimed to evaluate whether there is overlap in the vasodilatory pathways of dermal AITC application and WBHS by combining the challenges. In this open-label interventional study, healthy volunteers underwent dermal administration of AITC twice: under basal conditions and during WBHS. Dermal blood flow (DBF) was non-invasively measured using laser speckle contrast imaging four times, once in each of the following situations: baseline, WBHS only, AITC only, and WBHS combined with AITC. A total of 12 male volunteers, aged 18-61 years, participated in the study. Compared to baseline, following AITC application, their DBF increased by 63.43 AU (baseline: 32.55, 95% CI [17.78, 47.31] AU, AITC only: 95.97, 95% CI [81.21, 110.7] AU, p < 0.0001). During WBHS, the increase in DBF after AITC was 42.76 AU (WBHS only: 87.25, 95% CI [72.49, 102.0] AU, WBHS+AITC: 130.0, 95% CI [115.2, 144.8] AU, p < 0.0001). The combination of WBHS and AITC resulted in a lower DBF than the sum of the DBF responses to AITC and WBHS when applied separately (ED 20.67, 95% CI [-3.532, 44.88], p = 0.0916). This might point towards the presence of an interaction in the vasodilatory mechanism of AITC application and WBHS, possibly indicating overlap in their NOS-driven vasodilatory pathways.
RESUMEN
C-C Motif Chemokine Ligand 17 (CCL17) is a chemokine that binds and signals through the G-protein coupled CC-chemokine receptor 4 and has been implicated in the development of inflammatory and arthritic pain. GSK3858279 is a high-affinity, first-in-class, monoclonal antibody, binding specifically to CCL17 and inhibiting downstream signaling. In this phase I, randomized, single-center, double-blind, placebo-controlled, three-period, incomplete-block crossover study (NCT04114656), the analgesic effects and safety of intravenous GSK3858279 were assessed in a battery of evoked acute pain assessments on healthy, adult (aged ≥18 years), male participants. Participants were randomized 1:1 to receive either one placebo (0.9% w/v NaCl) dose followed by two GSK3858279 doses (PAA treatment sequence), or one GSK3858279 dose followed by two placebo doses (APP treatment sequence). The co-primary end points were ultraviolet B heat pain detection threshold (°C), cold pressor time to pain tolerance threshold (PTT, sec), and electrical PTT (mA, single stimulus). Twenty-one participants were enrolled (PAA = 11; APP = 10). Mean age (standard deviation) was 29.3 (7.9) years for PAA, 31.1 (7.7) years for APP. No significant differences were observed in the analgesic effect between GSK3858279 and placebo for any end point. Exposure to GSK3858279 was similar between Period 1 (APP sequence), and Periods 2 and 3 (PAA sequence), with some GSK3858279 carry-over. Changes in serum CCL17 levels were consistent with the expected GSK3858279 activity. All drug-related adverse events were mild in intensity and caused no discontinuations. The absence of an efficacy signal in this acute pain model does not preclude efficacy in chronic pain states.
Asunto(s)
Quimiocina CCL17 , Estudios Cruzados , Voluntarios Sanos , Dimensión del Dolor , Humanos , Masculino , Adulto , Método Doble Ciego , Quimiocina CCL17/sangre , Adulto Joven , Umbral del Dolor/efectos de los fármacos , Persona de Mediana Edad , Analgésicos/administración & dosificación , Analgésicos/efectos adversos , Administración Intravenosa , Dolor/tratamiento farmacológico , Dolor/diagnóstico , Dolor/etiologíaRESUMEN
Background: Noradrenergic signaling declines in Parkinson's disease (PD) following locus coeruleus neurodegeneration. Epidemiologic studies demonstrate that ß-acting drugs slow PD progression. Objective: The primary objective was to compare the safety and effects of 3 ß-adrenoceptor (ß-AR) acting drugs on central nervous system (CNS) function after a single dose in healthy volunteers (HVs) and evaluate the effects of multiple doses of ß-AR acting drugs in HVs and PD-patients. Methods: In Part A, HVs received single doses of 32âmg salbutamol, 160µg clenbuterol, 60âmg pindolol and placebo administered in a randomized, 4-way cross-over study. In Part B (randomized cross-over) and Part C (parallel, 2:1 randomized), placebo and/or clenbuterol (20µg on Day 1, 40µg on Day 2, 80µg on Days 3-7) were administered. CNS functions were assessed using the NeuroCart test battery, including pupillometry, adaptive tracking and recall tests. Results: Twenty-seven HVs and 12 PD-patients completed the study. Clenbuterol improved and pindolol reduced the adaptive tracking and immediate verbal recall performance. Clenbuterol and salbutamol increased and pindolol decreased pupil-to-iris ratios. Clenbuterol was selected for Parts B and C. In Part B, clenbuterol significantly increased performance in adaptive tracking with a tendency toward improved performance in immediate and delayed verbal recall. In Part C trends toward improved performance in immediate and delayed verbal recall were observed in PD-patients. Typical cardiovascular peripheral ß2-AR effects were observed with clenbuterol. Conclusions: This study demonstrates the pro-cognitive effects of clenbuterol in HVs with similar trends in PD-patients. The mechanism of action is likely activation of ß2-ARs in the CNS.
Aims and Purpose of the Research:This research aimed to explore how three different drugs affect brain function. These drugs are salbutamol, clenbuterol, and pindolol and work in the brain by stimulating specific brain cells that can improve aspects like memory and coordination. The main question was to see how safe these drugs were and how they impact the brain function after one dose in healthy people, and after multiple doses in both healthy people and those with Parkinson's disease.Background of the Research:Parkinson's disease is a condition where brain cells start to die, which affects different areas of the brain, including movement function, as well as memory and attention. This research matters because finding drugs that affect the brain function could improve the lives of people with Parkinson's disease.Methods and Research Design:The study was conducted in three parts. In the first part, healthy volunteers took one dose of each of the three drugs salbutamol, clenbuterol, and pindolol as well as a placebo (a harmless pill that has no effect). The researchers tested the participants' brain functions using various tasks including memory tests and eye response measurements. In the second and third part, healthy people and people with Parkinson's disease took the drug that performed best in healthy volunteers for seven days.Results and Importance:In the first part, a single dose of clenbuterol was safe and improved memory and attentions tasks in healthy people, and therefore was chosen for further testing in the second and third part. In these parts, multiple doses of clenbuterol were safe and helped improve memory and attention tasks in healthy people, with similar positive trends seen in people with Parkinson's disease. The study suggests that clenbuterol might help improve brain function by activating specific receptors in the brain.These results are important because they suggest that clenbuterol could be a potential treatment to help improve brain function in people with Parkinson's disease. However, more research is needed to fully understand its effects and to confirm these findings.
Asunto(s)
Albuterol , Clenbuterol , Estudios Cruzados , Enfermedad de Parkinson , Pindolol , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Clenbuterol/farmacología , Clenbuterol/administración & dosificación , Clenbuterol/efectos adversos , Anciano , Adulto , Pindolol/farmacología , Pindolol/administración & dosificación , Albuterol/farmacología , Albuterol/administración & dosificación , Agonistas Adrenérgicos beta/farmacología , Agonistas Adrenérgicos beta/administración & dosificación , Voluntarios SanosRESUMEN
INTRODUCTION/AIMS: Corneal confocal microscopy (CCM) detects small nerve fiber loss and correlates with skin biopsy findings in diabetic neuropathy. In chronic idiopathic axonal polyneuropathy (CIAP) this correlation is unknown. Therefore, we compared CCM and skin biopsy in patients with CIAP to healthy controls, patients with painful diabetic neuropathy (PDN) and diabetics without overt neuropathy (DM). METHODS: Participants with CIAP and suspected small fiber neuropathy (n = 15), PDN (n = 16), DM (n = 15), and healthy controls (n = 16) underwent skin biopsy and CCM testing. Inter-center intraclass correlation coefficients (ICC) were calculated for CCM parameters. RESULTS: Compared with healthy controls, patients with CIAP and PDN had significantly fewer nerve fibers in the skin (IENFD: 5.7 ± 2.3, 3.0 ± 1.8, 3.9 ± 1.5 fibers/mm, all p < .05). Corneal nerve parameters in CIAP (fiber density 23.8 ± 4.9 no./mm2, branch density 16.0 ± 8.8 no./mm2, fiber length 13.1 ± 2.6 mm/mm2) were not different from healthy controls (24.0 ± 6.8 no./mm2, 22.1 ± 9.7 no./mm2, 13.5 ± 3.5 mm/mm2, all p > .05). In patients with PDN, corneal nerve fiber density (17.8 ± 5.7 no./mm2) and fiber length (10.5 ± 2.7 mm/mm2) were reduced compared with healthy controls (p < .05). CCM results did not correlate with IENFD in CIAP patients. Inter-center ICC was 0.77 for fiber density and 0.87 for fiber length. DISCUSSION: In contrast to patients with PDN, corneal nerve parameters were not decreased in patients with CIAP and small nerve fiber damage. Therefore, CCM is not a good biomarker for small nerve fiber loss in CIAP patients.
Asunto(s)
Córnea , Neuropatías Diabéticas , Microscopía Confocal , Fibras Nerviosas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Córnea/inervación , Córnea/patología , Fibras Nerviosas/patología , Neuropatías Diabéticas/patología , Neuropatías Diabéticas/diagnóstico por imagen , Anciano , Adulto , Piel/inervación , Piel/patología , Polineuropatías/patología , Polineuropatías/diagnóstico por imagenRESUMEN
Dynamic balance assessments such as walking adaptability may yield a more realistic prediction of drug-induced falls compared with postural stability measurements, as falls often result from limited gait adjustments when walking. The Interactive Walkway (IWW) measures walking adaptability but sensitivity to medication effects is unknown. If proven sensitive and specific, IWW could serve as a biomarker for targeted fall-risk assessments in early clinical drug development. In this three-way crossover study, 18 healthy elderly (age: 65-80 years) subjects received 5 mg zolpidem, 10 mg suvorexant, or placebo in the morning. Assessments were performed pre-dose and approximately hourly until 9 h post-dose. IWW assessments included an 8-meter walking test, goal-directed stepping, obstacle-avoidance, and tandem-walking. Other pharmacodynamic measurements were the Timed-Up-and-Go (TUG) test at a comfortable and fast pace, adaptive tracking, and body sway. A decline in performance was observed for zolpidem compared with placebo for 3 h post-dose in IWW walking adaptability outcome measures, TUG, adaptive tracking, and body sway. For the IWW tasks, a decrease in walking speed (among others) was observed. IWW parameters were not affected by suvorexant compared with placebo at any timepoint. However, an increase of 9.8% (95%CI: 1.8%, 18.5%) in body sway was observed for suvorexant compared with placebo up to 3 h post-dose. The IWW successfully quantified drug effects of two hypnotic drugs and distinguished between zolpidem and suvorexant regarding their effects on walking. As a biomarker, the IWW demonstrated sensitivity in assessing dynamic balance and potential fall risk in early phase clinical drug development.
Asunto(s)
Accidentes por Caídas , Azepinas , Estudios Cruzados , Equilibrio Postural , Triazoles , Caminata , Zolpidem , Humanos , Anciano , Zolpidem/administración & dosificación , Zolpidem/efectos adversos , Triazoles/administración & dosificación , Triazoles/efectos adversos , Masculino , Femenino , Anciano de 80 o más Años , Accidentes por Caídas/prevención & control , Caminata/fisiología , Equilibrio Postural/efectos de los fármacos , Equilibrio Postural/fisiología , Azepinas/administración & dosificación , Azepinas/efectos adversos , Biomarcadores , Medición de Riesgo/métodos , Método Doble Ciego , Piridinas/administración & dosificación , Piridinas/efectos adversosRESUMEN
AIMS: Phosphodiesterase 2 (PDE2) regulates intracellular cyclic adenosine monophosphate and guanosine monophosphate (cAMP/cGMP) levels, which contribute to processes crucial for learning and memory. BI 474121, a potent and selective PDE2 inhibitor, is in development for treating cognitive impairment associated with schizophrenia. METHODS: The effects of BI 474121 on cGMP concentrations were first assessed in rat cerebrospinal fluid (CSF) to demonstrate central nervous system (CNS) and functional target engagement. Next, a Phase I study in healthy participants assessed the pharmacokinetics of BI 474121 in CSF vs. plasma, the pharmacodynamics of BI 474121 by measuring cGMP concentrations in the CSF, and the safety of BI 474121. RESULTS: In rats, BI 474121 was associated with a dose-dependent increase (71% at the highest dose tested [3.0 mg kg-1]) in cGMP levels in the CSF relative to vehicle (P < 0.001). In healthy participants, the maximum-measured concentration CSF-to-plasma ratio for BI 474121 exposure was similar following single oral doses of BI 474121 2.5, 10, 20 and 40 mg (dose-adjusted geometric mean: 8.96% overall). BI 474121 2.5-40 mg administration in healthy participants also increased cGMP levels in CSF (maximum exposure-related change from baseline ratio, BI 474121: 1.44-2.20 vs. placebo: 1.26). The most common treatment-emergent adverse event (AE) was mild-to-moderate post-lumbar puncture syndrome, which resolved with standard treatment. No AEs of special interest were observed. CONCLUSIONS: BI 474121 crosses the blood-brain barrier to inhibit PDE2, supporting cGMP as a translational marker to monitor CNS target engagement. These findings promote further clinical development of BI 474121. CLINICALTRIALS: gov number (NCT04672954).
Asunto(s)
GMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2 , Relación Dosis-Respuesta a Droga , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Adulto Joven , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , GMP Cíclico/líquido cefalorraquídeo , GMP Cíclico/metabolismo , GMP Cíclico/sangre , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Método Doble Ciego , Voluntarios Sanos , Inhibidores de Fosfodiesterasa/farmacocinética , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/efectos adversos , Inhibidores de Fosfodiesterasa/administración & dosificación , Investigación Biomédica Traslacional , Ratas WistarRESUMEN
Investigational therapeutics that target toxic species of α-synuclein (αSyn) aim to slow down or halt disease progression in patients with Parkinson's disease (PD). Here this 44-week, randomized, placebo-controlled, double-blind, single-center phase 1 study investigated safety, tolerability and immunogenicity of UB-312, an active immunotherapeutic targeting pathological αSyn, in patients with PD. The primary outcome measures were adverse event frequency and change in anti-αSyn antibody titers in blood and cerebrospinal fluid (CSF). Exploratory outcomes were changes in clinical scales and biomarker-based target engagement as measured by seed amplification assays. Twenty patients were randomized 7:3 (UB-312:placebo) into 300/100/100 µg or 300/300/300 µg (weeks 1, 5 and 13) intramuscular prime-boost dose groups. Safety was similar across groups; adverse events were mostly mild and transient. Two patients experienced three serious adverse events in total, one possibly treatment related; all resolved without sequalae. Anti-αSyn antibodies in serum from 12/13 and CSF from 5/13 patients who received three UB-312 doses confirmed immunogenicity. Mean serum titers (in log-dilution factor) increased from baseline by 1.398 and 1.354, and peaked at week 29 at 2.520 and 2.133, for 300/100/100 µg and 300/300/300 µg, respectively. CSF titers were 0 at baseline and were 0.182 and 0.032 at week 21, respectively. Exploratory analyses showed no statistical differences in clinical scales but a significant reduction of αSyn seeds in CSF of a subset of UB-312-treated patients. These data support further UB-312 development. ClinicalTrials.gov: NCT04075318 .
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/inmunología , Masculino , Femenino , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Persona de Mediana Edad , Anciano , Método Doble Ciego , Inmunoterapia Activa/métodos , Biomarcadores/sangreRESUMEN
Apomorphine, used to treat OFF episodes in patients with Parkinson's disease (PD), is typically administered via subcutaneous injections. Administration of an oromucosal solution could offer a non-invasive and user-friendly alternative. This two-part clinical study evaluated the safety, tolerability, pharmacokinetics (PK), and dose proportionality of a novel apomorphine hydrochloride oromucosal solution, as well as its relative bioavailability to subcutaneous apomorphine injection and apomorphine sublingual film. In part A of the study, 12 patients with PD received 2 mg oromucosal apomorphine (4% weight/volume) and 2 mg subcutaneous apomorphine in a randomized order, followed by 4 and 8 mg oromucosal apomorphine. In part B of the study, 13 patients with PD received 7 mg oromucosal apomorphine (7% weight/volume) and 30 mg sublingual apomorphine in a randomized order, followed by 14 mg oromucosal apomorphine. Washout between dose administrations in both study parts was at least 2 days. Safety, tolerability, and PK were assessed pre- and post-dose. Both study parts showed that oromucosal apomorphine was generally well-tolerated. Observed side effects were typical for apomorphine administration and included asymptomatic orthostatic hypotension, yawning, fatigue, and somnolence. Oromucosal apomorphine exposure increased with dose, although less than dose proportional. The mean (SD) maximum exposure reached with 14 mg oromucosal apomorphine was 753.0 (298.6) ng*min/mL (area under the plasma concentration-time curve from zero to infinity) and 8.0 (3.3) ng/mL (maximum plasma concentration). This was comparable to exposure reached after 2 mg subcutaneous apomorphine and approximately half of the exposure observed with 30 mg sublingual apomorphine. In summary, clinically relevant plasma concentrations could be reached in PD patients without tolerability issues.
Asunto(s)
Apomorfina , Enfermedad de Parkinson , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Administración Oral , Administración Sublingual , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/efectos adversos , Apomorfina/administración & dosificación , Apomorfina/farmacocinética , Apomorfina/efectos adversos , Disponibilidad Biológica , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Inyecciones Subcutáneas , Enfermedad de Parkinson/tratamiento farmacológico , Adulto , Anciano de 80 o más AñosRESUMEN
Drug development for mood disorders can greatly benefit from the development of robust, reliable, and objective biomarkers. The incorporation of smartphones and wearable devices in clinical trials provide a unique opportunity to monitor behavior in a non-invasive manner. The objective of this study is to identify the correlations between remotely monitored self-reported assessments and objectively measured activities with depression severity assessments often applied in clinical trials. 30 unipolar depressed patients and 29 age- and gender-matched healthy controls were enrolled in this study. Each participant's daily physiological, physical, and social activity were monitored using a smartphone-based application (CHDR MORE™) for 3 weeks continuously. Self-reported depression anxiety stress scale-21 (DASS-21) and positive and negative affect schedule (PANAS) were administered via smartphone weekly and daily respectively. The structured interview guide for the Hamilton depression scale and inventory of depressive symptomatology-clinical rated (SIGHD-IDSC) was administered in-clinic weekly. Nested cross-validated linear mixed-effects models were used to identify the correlation between the CHDR MORE™ features with the weekly in-clinic SIGHD-IDSC scores. The SIGHD-IDSC regression model demonstrated an explained variance (R2) of 0.80, and a Root Mean Square Error (RMSE) of ± 15 points. The SIGHD-IDSC total scores were positively correlated with the DASS and mean steps-per-minute, and negatively correlated with the travel duration. Unobtrusive, remotely monitored behavior and self-reported outcomes are correlated with depression severity. While these features cannot replace the SIGHD-IDSC for estimating depression severity, it can serve as a complementary approach for assessing depression and drug effects outside the clinic.
Asunto(s)
Trastorno Depresivo Mayor , Aplicaciones Móviles , Dispositivos Electrónicos Vestibles , Humanos , Teléfono Inteligente , Autoinforme , Depresión/diagnósticoRESUMEN
BACKGROUND: Oliceridine (Olinvyk) is a µ-opioid receptor agonist that in contrast to conventional opioids preferentially engages the G-protein-coupled signaling pathway. This study was designed to determine the utility function of oliceridine versus morphine based on neurocognitive tests and cold pressor test. METHODS: The study had a randomized, double-blind, placebo-controlled, partial block three-way crossover design. Experiments were performed in 20 male and female volunteers. The subjects received intravenous oliceridine (1 or 3 mg; cohorts of 10 subjects/dose), morphine (5 or 10 mg; cohorts of 10 subjects/dose), or placebo on three separate occasions. Before and after dosing, neurocognitive tests, cold pressor test, and plasma drug concentrations were obtained at regular intervals. Population pharmacokinetic-pharmacodynamic analyses served as the basis for construction of a utility function, which is an objective function of probability of benefit minus probability of harm. Antinociception served as the measure of benefit, and slowing of saccadic peak velocity and increased body sway as the measures of neurocognitive harm. RESULTS: The oliceridine and morphine C50 values, i.e., the effect-site concentrations causing 50% effect, were as follows: antinociception, 13 ± 2 and 23 ± 7 ng/ml; saccadic peak velocity, 90 ± 14 and 54 ± 15 ng/ml; and body sway, 10 ± 2 and 5.6 ± 0.8 ng/ml, respectively. The ratio oliceridine/morphine of the therapeutic indices, C50(benefit)/C50(harm), were 0.34 (95% CI, 0.17 to 0.7; P < 0.01) for saccadic peak velocity and 0.33 (0.16 to 0.50; P < 0.01) for body sway. The oliceridine utility was positive across the effect-site concentration 5 to 77 ng/ml, indicative of a greater probability of benefit than harm. The morphine utility was not significantly different from 0 from 0 to 100 ng/ml. Over the concentration range 15 to 50 ng/ml, the oliceridine utility was superior to that of morphine (P < 0.01). Similar observations were made for body sway. CONCLUSIONS: These data indicate that over the clinical concentration range, oliceridine is an analgesic with a favorable safety profile over morphine when considering analgesia and neurocognitive function.
Asunto(s)
Morfina , Compuestos de Espiro , Masculino , Humanos , Femenino , Analgésicos Opioides , Receptores OpioidesRESUMEN
AIMS: Dysfunction of nitric oxide-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate signalling is implicated in the pathophysiology of cognitive impairment. Zagociguat is a central nervous system (CNS) penetrant sGC stimulator designed to amplify nitric oxide-cyclic guanosine monophosphate signalling in the CNS. This article describes a phase 1b study evaluating the safety and pharmacodynamic effects of zagociguat. METHODS: In this randomized crossover study, 24 healthy participants aged ≥65 years were planned to receive 15 mg zagociguat or placebo once daily for 2 15-day periods separated by a 27-day washout. Adverse events, vital signs, electrocardiograms and laboratory tests were conducted to assess safety. Pharmacokinetics of zagociguat were evaluated in blood and cerebrospinal fluid (CSF). Pharmacodynamic assessments included evaluation of cerebral blood flow, CNS tests, pharmaco-electroencephalography, passive leg movement and biomarkers in blood, CSF and brain. RESULTS: Twenty-four participants were enrolled; 12 participants completed both treatment periods, while the other 12 participants completed only 1 treatment period. Zagociguat was well-tolerated and penetrated the blood-brain barrier, with a CSF/free plasma concentration ratio of 0.45 (standard deviation 0.092) measured 5 h after the last dose of zagociguat on Day 15. Zagociguat induced modest decreases in blood pressure. No consistent effects of zagociguat on other pharmacodynamic parameters were detected. CONCLUSION: Zagociguat was well-tolerated and induced modest blood pressure reductions consistent with other sGC stimulators. No clear pharmacodynamic effects of zagociguat were detected. Studies in participants with proven reduced cerebral blood flow or CNS function may be an avenue for further evaluation of the compound.
Asunto(s)
Guanosina Monofosfato , Óxido Nítrico , Anciano , Humanos , Guanilil Ciclasa Soluble/metabolismo , Estudios Cruzados , Transducción de Señal , VasodilatadoresRESUMEN
BACKGROUND: Central nervous system (CNS) disorders benefit from ongoing monitoring to assess disease progression and treatment efficacy. Mobile health (mHealth) technologies offer a means for the remote and continuous symptom monitoring of patients. Machine Learning (ML) techniques can process and engineer mHealth data into a precise and multidimensional biomarker of disease activity. OBJECTIVE: This narrative literature review aims to provide an overview of the current landscape of biomarker development using mHealth technologies and ML. Additionally, it proposes recommendations to ensure the accuracy, reliability, and interpretability of these biomarkers. METHODS: This review extracted relevant publications from databases such as PubMed, IEEE, and CTTI. The ML methods employed across the selected publications were then extracted, aggregated, and reviewed. RESULTS: This review synthesized and presented the diverse approaches of 66 publications that address creating mHealth-based biomarkers using ML. The reviewed publications provide a foundation for effective biomarker development and offer recommendations for creating representative, reproducible, and interpretable biomarkers for future clinical trials. CONCLUSION: mHealth-based and ML-derived biomarkers have great potential for the remote monitoring of CNS disorders. However, further research and standardization of study designs are needed to advance this field. With continued innovation, mHealth-based biomarkers hold promise for improving the monitoring of CNS disorders.
Asunto(s)
Telemedicina , Dispositivos Electrónicos Vestibles , Humanos , Reproducibilidad de los Resultados , Sistema Nervioso Central , Aprendizaje Automático , Biomarcadores , Telemedicina/métodosRESUMEN
BACKGROUND: Loss-of-function mutations in the GBA1 gene are one of the most common genetic risk factors for onset of Parkinson's disease and subsequent progression (GBA-PD). GBA1 encodes the lysosomal enzyme glucocerebrosidase (GCase), a promising target for a possible first disease-modifying therapy. LTI-291 is an allosteric activator of GCase, which increases the activity of normal and mutant forms of GCase. OBJECTIVES: This first-in-patient study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of 28 daily doses of LTI-291 in GBA-PD. METHODS: This was a randomized, double-blind, placebo-controlled trial in 40 GBA-PD participants. Twenty-eight consecutive daily doses of 10, 30, or 60 mg of LTI-291 or placebo were administered (n = 10 per treatment allocation). Glycosphingolipid (glucosylceramide and lactosylceramide) levels were measured in peripheral blood mononuclear cells (PBMCs), plasma, and cerebrospinal fluid (CSF), and a test battery of neurocognitive tasks, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale and the Mini-Mental State Exam, were performed. RESULTS: LTI-291 was generally well tolerated, no deaths or treatment-related serious adverse events occurred, and no participants withdrew due to adverse events. Cmax , and AUC0-6 of LTI-291 increased in a dose-proportional manner, with free CSF concentrations equal to the free fraction in plasma. A treatment-related transient increase in intracellular glucosylceramide (GluCer) in PBMCs was measured. CONCLUSION: These first-in-patient studies demonstrated that LTI-291 was well tolerated when administered orally for 28 consecutive days to patients with GBA-PD. Plasma and CSF concentrations that are considered pharmacologically active were reached (ie, sufficient to at least double GCase activity). Intracellular GluCer elevations were detected. Clinical benefit will be assessed in a larger long-term trial in GBA-PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Glucosilceramidasa/genética , Leucocitos Mononucleares , Glucosilceramidas/uso terapéutico , Método Doble Ciego , MutaciónRESUMEN
Increased leucine-rich repeat kinase 2 (LRRK2) kinase activity is an established risk factor for Parkinson's disease (PD), and several LRRK2 kinase inhibitors are in clinical development as potential novel disease-modifying therapeutics. This biomarker characterization study explored within- and between-subject variability of multiple LRRK2 pathway biomarkers (total LRRK2 [tLRRK2], phosphorylation of the serine 935 (Ser935) residue on LRRK2 [pS935], phosphorylation of Rab10 [pRab10], and total Rab10 [tRab10]) in different biological sources (whole blood, peripheral blood mononuclear cells [PBMCs], neutrophils) as candidate human target engagement and pharmacodynamic biomarkers for implementation in phase I/II pharmacological studies of LRRK2 inhibitors. PD patients with a LRRK2 mutation (n = 6), idiopathic PD patients (n = 6), and healthy matched control subjects (n = 10) were recruited for repeated blood and cerebrospinal fluid (CSF) sampling split over 2 days. Within-subject variability (geometric coefficient of variation [CV], %) of these biomarkers was lowest in whole blood and neutrophils (range: 12.64%-51.32%) and considerably higher in PBMCs (range: 34.81%-273.88%). Between-subject variability displayed a similar pattern, with relatively lower variability in neutrophils (range: 61.30%-66.26%) and whole blood (range: 44.94%-123.11%), and considerably higher variability in PBMCs (range: 189.60%-415.19%). Group-level differences were observed with elevated mean pRab10 levels in neutrophils and a reduced mean pS935/tLRRK2 ratio in PBMCs in PD LRRK2-mutation carriers compared to healthy controls. These findings suggest that the evaluated biomarkers and assays could be used to verify pharmacological mechanisms of action and help explore the dose-response of LRRK2 inhibitors in early-phase clinical studies. In addition, comparable α-synuclein aggregation in CSF was observed in LRRK2-mutation carriers compared to idiopathic PD patients.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Leucina/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Biomarcadores/metabolismoRESUMEN
BACKGROUND: The prevalence of neurodegenerative diseases increases significantly with increasing age. Neurodegeneration is the progressive loss of function of neurons that eventually leads to cell death, which in turn leads to cognitive disfunction. Cognitive performance can therefore also be considered age dependent. The current study investigated if the NeuroCart can detect age related decline on drug-sensitive CNS-tests in healthy volunteers (HV), and whether there are interactions between the rates of decline and sex. This study also investigated if the NeuroCart was able to differentiate disease profiles of neurodegenerative diseases, compared to age-matched HV and if there is age related decline in patient groups. METHODS: This retrospective study encompassed 93 studies, performed at CHDR between 2005 and 2020 that included NeuroCart measurements, which resulted in data from 2729 subjects. Five NeuroCart tests were included in this analysis: smooth and saccadic eye movements, body sway, adaptive tracking, VVLT and N-back. Data from 84 healthy male and female volunteer studies, aged 16-90, were included. Nine studies were performed in patients with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) or vascular dementia (VaD). The data were analyzed with regression analyses on age by group, sex, sex by age, group by sex and group by sex by age. Least square means (LSMs) and 95% confidence intervals (CIs) were calculated for each group at the average age of the group, and at the average age of each of the other groups, and per sex. RESULTS: Mean age and standard deviation (SD) for all groups was: HV 36.2 years (19.3), 68.3 CE years (8), PD 62.7 years (8.5), HD 51.4 years (9.8) and VaD 66.9 years (8.1). Performance on all NeuroCart tests decreased significantly each year in HV. Saccadic peak velocity (SPV) was increased in AD compared to age-matched HV (+26.28 degrees/s, p = 0.007), while SPV was decreased for PD and HD compared to age-matched HV (PD: -15.87 degrees/s, p = 0.038, HD: -22.52 degrees/s, p = 0.018). In HD patients SPV decreased faster with age compared to HV. On saccadic peak velocity the slopes between HD vs HV were significantly different, indicating a faster decline in performance on this task for HD patients compared to HV per age year. Smooth pursuit showed an overall significant difference between subject groups (p = 0.037. Significantly worse performance was found for AD (-12.87%, p ≤0.001), PD (-4.45%, p ≤0.001) and VaD (-5.69%, p = 0.005) compared to age-matched HV. Body sway significantly increased with age (p = 0.021). Postural stability was decreased for both PD and HD compared to age-matched HV (PD: +38.8%, p ≤0.001, HD: 154.9%, p ≤0.001). The adaptive tracking was significantly decreased with age (p ≤0.001). Adaptive tracking performance by AD (-7.54%, p ≤0.001), PD (-8.09%, p ≤0.001), HD (-5.19%, p ≤0.001) and VaD (-5.80%, p ≤0.001) was decreased compared to age-matched HV. Adaptive tracking in PD patients vs HV and in PD vs HD patients was significantly different, indicating a faster decline on this task per age year for PD patients compared to HV and HD. The VVLT delayed word recall showed an overall significant effect of subject group (p = 0.006. Correct delayed word recall was decreased for AD (-5.83 words, p ≤0.001), HD (-3.40 words, p ≤0.001) and VaD (-5.51 words, p ≤0.001) compared to age-matched HV. CONCLUSION: This study showed that the NeuroCart can detect age-related decreases in performance in HV, which were not affected by sex. The NeuroCart was able to detect significant differences in performance between AD, PD, HD, VaD and age-matched HV. Disease durations were unknown, therefore this cross-sectional study was not able to show age-related decline after disease onset. This article shows the importance of investigating age-related decline on digitalized neurocognitive test batteries. Performance declines with age, which emphasizes the need to correct for age when including HV in clinical trials. Patients with different neurogenerative diseases have distinct performance patterns on the NeuroCart, which this should be considered when performing NeuroCart tasks in patients with AD, PD, HD and VaD.
Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Masculino , Femenino , Enfermedades Neurodegenerativas/diagnóstico , Estudios Retrospectivos , Pruebas Neuropsicológicas , Enfermedad de Alzheimer/diagnóstico , Cognición/fisiologíaRESUMEN
Soluble guanylate cyclase (sGC) and its product, cyclic guanosine monophosphate, play a role in learning and memory formation. Zagociguat (CY6463) is a novel stimulator of sGC being developed for the treatment of neurodegenerative disease. Single zagociguat doses of 0.3, 1, 3, 10, 20, 30, and 50 mg were administered once to healthy participants in a single-ascending-dose phase; then zagociguat 2, 5, 10, and 15 mg was administered q.d. for 14 days in a multiple-ascending-dose phase; and, finally, zagociguat 10 mg was administered once in both fed and fasted state in a food-interaction phase. Safety of zagociguat was evaluated by monitoring treatment-emergent adverse events, suicide risk, vital signs, electrocardiography, and laboratory tests. Pharmacokinetics of zagociguat were assessed through blood, urine, and cerebrospinal fluid sampling. Pharmacodynamic effects of zagociguat were evaluated with central nervous system (CNS) tests and pharmaco-electroencephalography. Zagociguat was well-tolerated across all doses evaluated. Zagociguat exposures increased in a dose-proportional manner. Median time to maximum concentration ranged from 0.8 to 5 h and mean terminal half-life from 52.8 to 67.1 h. CNS penetration of the compound was confirmed by cerebrospinal fluid sampling. Zagociguat induced up to 6.1 mmHg reduction in mean systolic and up to 7.5 mmHg reduction in mean diastolic blood pressure. No consistent pharmacodynamic (PD) effects on neurocognitive function were observed. Zagociguat was well-tolerated, CNS-penetrant, and demonstrated PD activity consistent with other sGC stimulators. The results of this study support further development of zagociguat.
Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Área Bajo la Curva , Sistema Nervioso Central , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Guanilil Ciclasa Soluble , VasodilatadoresRESUMEN
BACKGROUND: Molecules related to glucocerebrosidase (GCase) are potential biomarkers for development of compounds targeting GBA1-associated Parkinson's disease (GBA-PD). OBJECTIVES: Assessing variability of various glycosphingolipids (GSLs) in plasma, peripheral blood mononuclear cells (PBMCs), and cerebrospinal fluid (CSF) across GBA-PD, idiopathic PD (iPD), and healthy volunteers (HVs). METHODS: Data from five studies were combined. Variability was assessed of glucosylceramide (various isoforms), lactosylceramide (various isoforms), glucosylsphingosine, galactosylsphingosine, GCase activity (using fluorescent 4-methylumbeliferryl-ß-glucoside), and GCase protein (using enzyme-linked immunosorbent assay) in plasma, PBMCs, and CSF if available, in GBA-PD, iPD, and HVs. GSLs in leukocyte subtypes were compared in HVs. Principal component analysis was used to explore global patterns in GSLs, clinical characteristics (Movement Disorder Society - Unified Parkinson's Disease Rating Scale Part 3 [MDS-UPDRS-3], Mini-Mental State Examination [MMSE], GBA1 mutation type), and participant status (GBA-PD, iPD, HVs). RESULTS: Within-subject between-day variability ranged from 5.8% to 44.5% and was generally lower in plasma than in PBMCs. Extracellular glucosylceramide levels (plasma) were slightly higher in GBA-PD compared with both iPD and HVs, while intracellular levels were comparable. GSLs in the different matrices (plasma, PBMCs, CSF) did not correlate. Both lactosylceramide and glucosylsphingosine were more abundant in granulocytes compared with monocytes and lymphocytes. Absolute levels of GSL isoforms differed greatly. GBA1 mutation types could not be differentiated based on GSL data. CONCLUSIONS: Glucosylceramide can stably be measured over days in both plasma and PBMCs and may be used as a biomarker in clinical trials targeting GBA-PD. Glucosylsphingosine and lactosylceramide are stable in plasma but are strongly affected by leukocyte subtypes in PBMCs. GBA-PD could be differentiated from iPD and HVs, primarily based on glucosylceramide levels in plasma. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Lactosilceramidos , Leucocitos Mononucleares/metabolismo , Glucosilceramidas , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Antígenos CD , MutaciónRESUMEN
BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disease. Its slow and variable progression makes the development of new treatments highly dependent on validated biomarkers that can quantify disease progression and response to drug interventions. OBJECTIVE: We aimed to build a tool that estimates FSHD clinical severity based on behavioral features captured using smartphone and remote sensor data. The adoption of remote monitoring tools, such as smartphones and wearables, would provide a novel opportunity for continuous, passive, and objective monitoring of FSHD symptom severity outside the clinic. METHODS: In total, 38 genetically confirmed patients with FSHD were enrolled. The FSHD Clinical Score and the Timed Up and Go (TUG) test were used to assess FSHD symptom severity at days 0 and 42. Remote sensor data were collected using an Android smartphone, Withings Steel HR+, Body+, and BPM Connect+ for 6 continuous weeks. We created 2 single-task regression models that estimated the FSHD Clinical Score and TUG separately. Further, we built 1 multitask regression model that estimated the 2 clinical assessments simultaneously. Further, we assessed how an increasingly incremental time window affected the model performance. To do so, we trained the models on an incrementally increasing time window (from day 1 until day 14) and evaluated the predictions of the clinical severity on the remaining 4 weeks of data. RESULTS: The single-task regression models achieved an R2 of 0.57 and 0.59 and a root-mean-square error (RMSE) of 2.09 and 1.66 when estimating FSHD Clinical Score and TUG, respectively. Time spent at a health-related location (such as a gym or hospital) and call duration were features that were predictive of both clinical assessments. The multitask model achieved an R2 of 0.66 and 0.81 and an RMSE of 1.97 and 1.61 for the FSHD Clinical Score and TUG, respectively, and therefore outperformed the single-task models in estimating clinical severity. The 3 most important features selected by the multitask model were light sleep duration, total steps per day, and mean steps per minute. Using an increasing time window (starting from day 1 to day 14) for the FSHD Clinical Score, TUG, and multitask estimation yielded an average R2 of 0.65, 0.79, and 0.76 and an average RMSE of 3.37, 2.05, and 4.37, respectively. CONCLUSIONS: We demonstrated that smartphone and remote sensor data could be used to estimate FSHD clinical severity and therefore complement the assessment of FSHD outside the clinic. In addition, our results illustrated that training the models on the first week of data allows for consistent and stable prediction of FSHD symptom severity. Longitudinal follow-up studies should be conducted to further validate the reliability and validity of the multitask model as a tool to monitor disease progression over a longer period. TRIAL REGISTRATION: ClinicalTrials.gov NCT04999735; https://www.clinicaltrials.gov/ct2/show/NCT04999735.
RESUMEN
INTRODUCTION: Drivers should be aware of possible impairing effects of alcohol, medicinal substance, or fatigue on driving performance. Such effects are assessed in clinical trials, including a driving task or related psychomotor tasks. However, a choice between predicting tasks must be made. Here, we compare driving performance with on-the-road driving, simulator driving, and psychomotor tasks using the effect of sleep deprivation. METHOD: This two-way cross over study included 24 healthy men with a minimum driving experience of 3000km per year. Psychomotor tasks, simulated driving, and on-the-road driving were assessed in the morning and the afternoon after a well-rested night and in the morning after a sleep-deprived night. Driving behaviour was examined by calculating the Standard Deviation of Lateral Position (SDLP). RESULTS: SDLP increased after sleep deprivation for simulated (10cm, 95%CI:6.7-13.3) and on-the-road driving (2.8cm, 95%CI:1.9-3.7). The psychomotor test battery detected effects of sleep deprivation in almost all tasks. Correlation between on-the-road tests and simulator SDLP after a well-rested night (0.63, p < .001) was not present after a night of sleep deprivation (0.31, p = .18). Regarding the effect of sleep deprivation on the psychomotor test battery, only adaptive tracking correlated with the SDLP of the driving simulator (-0.50, p = .02). Other significant correlations were related to subjective VAS scores. DISCUSSION: The lack of apparent correlations and difference in sensitivity of performance of the psychomotor tasks, simulated driving and, on-the-road driving indicates that the tasks may not be interchangeable and may assess different aspects of driving behaviour.
Asunto(s)
Conducción de Automóvil , Privación de Sueño , Masculino , Humanos , Estudios Cruzados , Etanol/farmacología , Concienciación , Fatiga , Desempeño PsicomotorRESUMEN
BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising therapeutic approach for the treatment of Parkinson's disease (PD). OBJECTIVE: The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the potent, selective, CNS-penetrant LRRK2 inhibitor BIIB122 (DNL151) in healthy participants and patients with PD. METHODS: Two randomized, double-blind, placebo-controlled studies were completed. The phase 1 study (DNLI-C-0001) evaluated single and multiple doses of BIIB122 for up to 28 days in healthy participants. The phase 1b study (DNLI-C-0003) evaluated BIIB122 for 28 days in patients with mild to moderate PD. The primary objectives were to investigate the safety, tolerability, and plasma pharmacokinetics of BIIB122. Pharmacodynamic outcomes included peripheral and central target inhibition and lysosomal pathway engagement biomarkers. RESULTS: A total of 186/184 healthy participants (146/145 BIIB122, 40/39 placebo) and 36/36 patients (26/26 BIIB122, 10/10 placebo) were randomized/treated in the phase 1 and phase 1b studies, respectively. In both studies, BIIB122 was generally well tolerated; no serious adverse events were reported, and the majority of treatment-emergent adverse events were mild. BIIB122 cerebrospinal fluid/unbound plasma concentration ratio was ~1 (range, 0.7-1.8). Dose-dependent median reductions from baseline were observed in whole-blood phosphorylated serine 935 LRRK2 (≤98%), peripheral blood mononuclear cell phosphorylated threonine 73 pRab10 (≤93%), cerebrospinal fluid total LRRK2 (≤50%), and urine bis (monoacylglycerol) phosphate (≤74%). CONCLUSIONS: At generally safe and well-tolerated doses, BIIB122 achieved substantial peripheral LRRK2 kinase inhibition and modulation of lysosomal pathways downstream of LRRK2, with evidence of CNS distribution and target inhibition. These studies support continued investigation of LRRK2 inhibition with BIIB122 for the treatment of PD. © 2023 Denali Therapeutics Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.