Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 94: 104692, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451904

RESUMEN

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Asunto(s)
Síndrome de Down , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Envejecimiento , Diferenciación Celular , Síndrome de Down/genética , Quinasas DyrK
3.
Mol Psychiatry ; 26(10): 5766-5788, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32647257

RESUMEN

A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of ß-amyloid-(Aß)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aß deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical ß and γ-secretase inhibition. We found that T21 organoids secrete increased proportions of Aß-preventing (Aß1-19) and Aß-degradation products (Aß1-20 and Aß1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Síndrome de Down/genética , Genes Supresores , Humanos , Organoides/metabolismo , Trisomía
4.
Oncogene ; 40(4): 746-762, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33247204

RESUMEN

Leukemias are routinely sub-typed for risk/outcome prediction and therapy choice using acquired mutations and chromosomal rearrangements. Down syndrome acute lymphoblastic leukemia (DS-ALL) is characterized by high frequency of CRLF2-rearrangements, JAK2-mutations, or RAS-pathway mutations. Intriguingly, JAK2 and RAS-mutations are mutually exclusive in leukemic sub-clones, causing dichotomy in therapeutic target choices. We prove in a cell model that elevated CRLF2 in combination with constitutionally active JAK2 is sufficient to activate wtRAS. On primary clinical DS-ALL samples, we show that wtRAS-activation is an obligatory consequence of mutated/hyperphosphorylated JAK2. We further prove that CRLF2-ligand TSLP boosts the direct binding of active PTPN11 to wtRAS, providing the molecular mechanism for the wtRAS activation. Pre-inhibition of RAS or PTPN11, but not of PI3K or JAK-signaling, prevented TSLP-induced RAS-GTP boost. Cytotoxicity assays on primary clinical DS-ALL samples demonstrated that, regardless of mutation status, high-risk leukemic cells could only be killed using RAS-inhibitor or PTPN11-inhibitor, but not PI3K/JAK-inhibitors, suggesting a unified treatment target for up to 80% of DS-ALL. Importantly, protein activities-based principal-component-analysis multivariate clusters analyzed for independent outcome prediction using Cox proportional-hazards model showed that protein-activity (but not mutation-status) was independently predictive of outcome, demanding a paradigm-shift in patient-stratification strategy for precision therapy in high-risk ALL.


Asunto(s)
Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas ras/fisiología , Animales , Citocinas/fisiología , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/fisiología , Ratones , Fosfatidilinositol 3-Quinasas/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Receptores de Citocinas/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
5.
Prog Brain Res ; 251: 55-90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32057312

RESUMEN

Down Syndrome (DS) is a complex chromosomal disorder, with neurological issues, featuring among the symptoms. Primary neuronal cells and tissues are extremely useful, but limited both in supply and experimental manipulability. To better understand the cellular, molecular and pathological mechanisms involved in DS neurodevelopment and neurodegeneration, a range of different cellular models have been developed over the years including human: mouse hybrid cells, transchromosomic mouse embryonic stem cells (ESCs) and human ESC and induced pluripotent stem cells derived from different sources. All of these model systems have provided useful information in the study of DS. Furthermore, different technologies to genetically modify or correct trisomy of either single genes or the whole chromosome have been developed using these cellular models. New techniques and protocols to allow better modeling of cellular mechanisms and disease processes are being developed and the use of cerebral organoids offers great promise for future research into the neural phenotypes seen in DS.


Asunto(s)
Sistemas CRISPR-Cas , Síndrome de Down , Modelos Biológicos , Organoides , Células Madre Pluripotentes , Animales , Humanos
6.
Alzheimers Res Ther ; 10(1): 39, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29631614

RESUMEN

BACKGROUND: Down syndrome (DS) may be considered a genetic form of Alzheimer's disease (AD) due to universal development of AD neuropathology, but diagnosis and treatment trials are hampered by a lack of reliable blood biomarkers. A potential biomarker is neurofilament light (NF-L), due to its association with axonal damage in neurodegenerative conditions. METHODS: We measured blood NF-L concentrations in 100 adults with DS using Simoa NF-light® assays, and we examined relationships with age as well as cross-sectional and longitudinal dementia diagnosis. RESULTS: NF-L concentrations increased with age (Spearman's rho = 0.789, p < 0.001), with a steep increase after age 40, and they were predictive of dementia status (p = 0.022 adjusting for age, sex, and APOE4), but they showed no relationship with long-standing epilepsy or premorbid ability. Baseline NF-L concentrations were associated with longitudinal dementia status. CONCLUSIONS: NF-L is a biomarker for neurodegeneration in DS with potential for use in future clinical trials to prevent or delay dementia.


Asunto(s)
Síndrome de Down/complicaciones , Degeneración Nerviosa/sangre , Degeneración Nerviosa/etiología , Proteínas de Neurofilamentos/sangre , Adolescente , Adulto , Factores de Edad , Anciano , Demencia/sangre , Demencia/diagnóstico , Demencia/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadísticas no Paramétricas , Adulto Joven
7.
F1000Res ; 52016.
Artículo en Inglés | MEDLINE | ID: mdl-27239286

RESUMEN

Down syndrome (DS), which arises from trisomy of chromosome 21, is associated with deposition of large amounts of amyloid within the central nervous system. Amyloid accumulates in two compartments: as plaques within the brain parenchyma and in vessel walls of the cerebral microvasculature. The parenchymal plaque amyloid is thought to result in an early onset Alzheimer's disease (AD) dementia, a phenomenon so common amongst people with DS that it could be considered a defining feature of the condition. The amyloid precursor protein ( APP) gene lies on chromosome 21 and its presence in three copies in DS is thought to largely drive the early onset AD. In contrast, intracerebral haemorrhage (ICH), the main clinical consequence of vascular amyloidosis, is a more poorly defined feature of DS. We review recent epidemiological data on stroke (including haemorrhagic stroke) in order to make comparisons with a rare form of familial AD due to duplication (i.e. having three copies) of the APP region on chromosome 21, here called 'dup-APP', which is associated with more frequent and severe ICH. We conclude that although people with DS are at increased risk of ICH, this is less common than in dup-APP, suggesting the presence of mechanisms that act protectively. We review these mechanisms and consider comparative research into DS and dup-APP that may yield further pathophysiological insight.

8.
F1000Res ; 52016.
Artículo en Inglés | MEDLINE | ID: mdl-27019699

RESUMEN

In this article, we first present a summary of the general assumptions about Down syndrome (DS) still to be found in the literature. We go on to show how new research has modified these assumptions, pointing to a wide range of individual differences at every level of description. We argue that, in the context of significant increases in DS life expectancy, a focus on individual differences in trisomy 21 at all levels-genetic, cellular, neural, cognitive, behavioral, and environmental-constitutes one of the best approaches for understanding genotype/phenotype relations in DS and for exploring risk and protective factors for Alzheimer's disease in this high-risk population.

9.
Stem Cells ; 33(6): 2077-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25694335

RESUMEN

Trisomy 21 (T21), Down Syndrome (DS) is the most common genetic cause of dementia and intellectual disability. Modeling DS is beginning to yield pharmaceutical therapeutic interventions for amelioration of intellectual disability, which are currently being tested in clinical trials. DS is also a unique genetic system for investigation of pathological and protective mechanisms for accelerated ageing, neurodegeneration, dementia, cancer, and other important common diseases. New drugs could be identified and disease mechanisms better understood by establishment of well-controlled cell model systems. We have developed a first nonintegration-reprogrammed isogenic human induced pluripotent stem cell (iPSC) model of DS by reprogramming the skin fibroblasts from an adult individual with constitutional mosaicism for DS and separately cloning multiple isogenic T21 and euploid (D21) iPSC lines. Our model shows a very low number of reprogramming rearrangements as assessed by a high-resolution whole genome CGH-array hybridization, and it reproduces several cellular pathologies seen in primary human DS cells, as assessed by automated high-content microscopic analysis. Early differentiation shows an imbalance of the lineage-specific stem/progenitor cell compartments: T21 causes slower proliferation of neural and faster expansion of hematopoietic lineage. T21 iPSC-derived neurons show increased production of amyloid peptide-containing material, a decrease in mitochondrial membrane potential, and an increased number and abnormal appearance of mitochondria. Finally, T21-derived neurons show significantly higher number of DNA double-strand breaks than isogenic D21 controls. Our fully isogenic system therefore opens possibilities for modeling mechanisms of developmental, accelerated ageing, and neurodegenerative pathologies caused by T21.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Síndrome de Down/genética , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Animales , Células Cultivadas , Fibroblastos/citología , Humanos , Mitocondrias/genética
10.
Nat Commun ; 5: 4654, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25105841

RESUMEN

Children with Down syndrome (DS) and acute lymphoblastic leukaemia (ALL) have poorer survival and more relapses than non-DS children with ALL, highlighting an urgent need for deeper mechanistic understanding of DS-ALL. Here, using full-exome or cancer genes-targeted sequencing of 42 ALL samples from 39 DS patients, we uncover driver mutations in RAS, (KRAS and NRAS) recurring to a similar extent (15/42) as JAK2 (12/42) mutations or P2RY8-CRLF2 fusions (14/42). RAS mutations are almost completely mutually exclusive with JAK2 mutations (P=0.016), driving a combined total of two-thirds of analysed cases. Clonal architecture analysis reveals that both RAS and JAK2 drove sub-clonal expansions primarily initiated by CRLF2 rearrangements, and/or mutations in chromatin remodellers and lymphocyte differentiation factors. Remarkably, in 2/3 relapsed cases, there is a switch from a primary JAK2- or PTPN11-mutated sub-clone to a RAS-mutated sub-clone in relapse. These results provide important new insights informing the patient stratification strategies for targeted therapeutic approaches for DS-ALL.


Asunto(s)
Síndrome de Down/genética , Janus Quinasa 2/genética , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas ras/metabolismo , Niño , Cromatina/química , Análisis Mutacional de ADN , Síndrome de Down/metabolismo , Femenino , Eliminación de Gen , Regulación Leucémica de la Expresión Génica , Humanos , Linfocitos/citología , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Citocinas/genética
11.
Blood ; 122(4): 554-61, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23733339

RESUMEN

Some neonates with Down syndrome (DS) are diagnosed with self-regressing transient myeloproliferative disorder (TMD), and 20% to 30% of those progress to acute megakaryoblastic leukemia (AMKL). We performed exome sequencing in 7 TMD/AMKL cases and copy-number analysis in these and 10 additional cases. All TMD/AMKL samples contained GATA1 mutations. No exome-sequenced TMD/AMKL sample had other recurrently mutated genes. However, 2 of 5 TMD cases, and all AMKL cases, showed mutations/deletions other than GATA1, in genes proven as transformation drivers in non-DS leukemia (EZH2, APC, FLT3, JAK1, PARK2-PACRG, EXT1, DLEC1, and SMC3). One patient at the TMD stage revealed 2 clonal expansions with different GATA1 mutations, of which 1 clone had an additional driver mutation. Interestingly, it was the other clone that gave rise to AMKL after accumulating mutations in 7 other genes. Data suggest that GATA1 mutations alone are sufficient for clonal expansions, and additional driver mutations at the TMD stage do not necessarily predict AMKL progression. Later in infancy, leukemic progression requires "third-hit driver" mutations/somatic copy-number alterations found in non-DS leukemias. Putative driver mutations affecting WNT (wingless-related integration site), JAK-STAT (Janus kinase/signal transducer and activator of transcription), or MAPK/PI3K (mitogen-activated kinase/phosphatidylinositol-3 kinase) pathways were found in all cases, aberrant activation of which converges on overexpression of MYC.


Asunto(s)
Transformación Celular Neoplásica/genética , Síndrome de Down/genética , Leucemia Megacarioblástica Aguda/genética , Trastornos Mieloproliferativos/genética , Progresión de la Enfermedad , Síndrome de Down/complicaciones , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Recién Nacido , Leucemia Megacarioblástica Aguda/complicaciones , Leucemia Megacarioblástica Aguda/patología , Análisis por Micromatrices , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/patología , Polimorfismo de Nucleótido Simple , Transcriptoma
12.
Nat Rev Cancer ; 12(10): 721-32, 2012 10.
Artículo en Inglés | MEDLINE | ID: mdl-22996602

RESUMEN

If assessed by a number of criteria for cancer predisposition, Down's syndrome (DS) should be an overwhelmingly cancer-prone condition. Although childhood leukaemias occur more frequently in DS, paradoxically, individuals with DS have a markedly lower incidence of most solid tumours. Understanding the mechanisms that are capable of overcoming such odds could potentially open new routes for cancer prevention and therapy. In this Opinion article, we discuss recent reports that suggest unique and only partially understood mechanisms behind this paradox, including tumour repression, anti-angiogenic effects and stem cell ageing and availability.


Asunto(s)
Transformación Celular Neoplásica , Cromosomas Humanos Par 21/genética , Síndrome de Down/genética , Neoplasias/epidemiología , Neoplasias/genética , Envejecimiento/genética , Senescencia Celular , Inestabilidad Cromosómica , Síndrome de Down/complicaciones , Síndrome de Down/inmunología , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad , Humanos , Neoplasias/irrigación sanguínea , Neovascularización Patológica , Oncogenes , Células Madre/fisiología
13.
Br J Haematol ; 157(2): 197-200, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22221250

RESUMEN

Children with Down syndrome have a 20- to 50-fold increased risk of acute lymphocytic or myeloid leukaemia. Whole or partial gains of chromosome 21 have been described in multiple childhood leukaemias, and have recently been reported as a likely primary event in B-precursor-acute lymphoblastic leukaemia. It is unclear which amplified gene(s) on chromosome 21 play a key role in leukaemia progression. We describe a minimal amplified segment within the so-called 'Down syndrome critical region' shared between two cases of AML-M0; a Down syndrome, and a constitutionally normal individual. Interestingly, the amplified region does not include the oncogenes RUNX1, ETS2 and ERG.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Síndrome de Down/genética , Sitios Genéticos , Leucemia Mieloide Aguda/genética , Proteína Proto-Oncogénica c-ets-2/genética , Transactivadores/genética , Adolescente , Adulto , Femenino , Humanos , Masculino , Regulador Transcripcional ERG
14.
Proteome Sci ; 7: 31, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19715584

RESUMEN

BACKGROUND: Down syndrome (DS), caused by trisomy of human chromosome 21 (HSA21), is the most common genetic birth defect. Congenital heart defects (CHD) are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown. RESULTS: Here we show that aberrant adhesion and proliferation of DS cells can be reproduced using a transchromosomic model of DS (mouse fibroblasts bearing supernumerary HSA21). We also demonstrate a deacrease of cell migration in transchromosomic cells independently of their adhesion properties. We show that cell-autonomous proteome response to the presence of Collagen VI in extracellular matrix is strongly affected by trisomy 21. CONCLUSION: This set of experiments establishes a new model system for genetic dissection of the specific HSA21 gene-overdose contributions to aberrant cell migration, adhesion, proliferation and specific proteome response to collagen VI, cellular phenotypes linked to the pathogenesis of CHD.

15.
Mol Cell Proteomics ; 8(4): 585-95, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19001410

RESUMEN

Down syndrome, caused by the trisomy of chromosome 21, is a complex condition characterized by a number of phenotypic features, including reduced neuron number and synaptic plasticity, early Alzheimer disease-like neurodegeneration, craniofacial dysmorphia, heart development defects, increased incidence of childhood leukemia, and powerful suppression of the incidence of most solid tumors. Mouse models replicate a number of these phenotypes. The Tc1 Down syndrome model was constructed by introducing a single supernumerary human chromosome 21 into a mouse embryonic stem cell, and it reproduces a large number of Down syndrome phenotypes including heart development defects. However, little is still known about the developmental onset of the trisomy 21-induced mechanisms behind these phenotypes or the proteins that are responsible for them. This study determined the proteomic differences that are present in undifferentiated embryonic stem cells and are caused by an additional human chromosome 21. A total of 1661 proteins were identified using two-dimensional liquid chromatography followed by tandem mass spectrometry from whole embryonic stem cell lysates. Using isobaric tags for relative and absolute quantification, we found 52 proteins that differed in expression by greater than two standard deviations from the mean when an extra human chromosome 21 was present. Of these, at least 11 have a possible functional association with a Down syndrome phenotype or a human chromosome 21-encoded gene. This study also showed that quantitative protein expression differences in embryonic stem cells can persist to adult mouse as well as reproduce in human Down syndrome fetal tissue. This indicates that changes that are determined in embryonic stem cells of Down syndrome could potentially identify proteins that are involved in phenotypes of Down syndrome, and it shows that these cell lines can be used for the purpose of studying these pathomechanisms.


Asunto(s)
Síndrome de Down/metabolismo , Células Madre Embrionarias/metabolismo , Proteómica , Animales , Western Blotting , Línea Celular , Cromosomas Humanos Par 21/metabolismo , Modelos Animales de Enfermedad , Feto/metabolismo , Feto/patología , Humanos , Ratones , Péptidos/metabolismo , Proteínas/metabolismo , Reproducibilidad de los Resultados , Coloración y Etiquetado
16.
Am J Hum Genet ; 83(3): 388-400, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18771760

RESUMEN

Down syndrome (DS) is the most common cause of mental retardation. Many neural phenotypes are shared between DS individuals and DS mouse models; however, the common underlying molecular pathogenetic mechanisms remain unclear. Using a transchromosomic model of DS, we show that a 30%-60% reduced expression of Nrsf/Rest (a key regulator of pluripotency and neuronal differentiation) is an alteration that persists in trisomy 21 from undifferentiated embryonic stem (ES) cells to adult brain and is reproducible across several DS models. Using partially trisomic ES cells, we map this effect to a three-gene segment of HSA21, containing DYRK1A. We independently identify the same locus as the most significant eQTL controlling REST expression in the human genome. We show that specifically silencing the third copy of DYRK1A rescues Rest levels, and we demonstrate altered Rest expression in response to inhibition of DYRK1A expression or kinase activity, and in a transgenic Dyrk1A mouse. We reveal that undifferentiated trisomy 21 ES cells show DYRK1A-dose-sensitive reductions in levels of some pluripotency regulators, causing premature expression of transcription factors driving early endodermal and mesodermal differentiation, partially overlapping recently reported downstream effects of Rest +/-. They produce embryoid bodies with elevated levels of the primitive endoderm progenitor marker Gata4 and a strongly reduced neuroectodermal progenitor compartment. Our results suggest that DYRK1A-mediated deregulation of REST is a very early pathological consequence of trisomy 21 with potential to disturb the development of all embryonic lineages, warranting closer research into its contribution to DS pathology and new rationales for therapeutic approaches.


Asunto(s)
Síndrome de Down/metabolismo , Células Madre Embrionarias/patología , Dosificación de Gen , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas/fisiología , Proteínas Represoras/fisiología , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/patología , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Células Madre Pluripotentes/patología , Células Madre Pluripotentes/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Sitios de Carácter Cuantitativo , Proteínas Represoras/genética , Quinasas DyrK
17.
Br J Haematol ; 137(4): 337-41, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17456055

RESUMEN

Acquired mutations activating Janus kinase 3 (jak3) have been reported in Down syndrome (DS) and non-DS patients with acute megakaryoblastic leukaemia (AMKL). This highlighted jak3-activation as an important event in the pathogenesis of AMKL, and predicted inhibitors of jak3 as conceptual therapeutics for AMKL. Of 16 DS-transient myeloproliferative disorder (TMD)/AMKL patients tested, seven showed JAK3 mutations. Three mutations deleted the kinase (JH1) domain, abolishing the main function of jak3. Another patient displayed a mutation identical to a previously reported inherited loss-of-function causing severe combined immunodeficiency. Our data suggest that both gain-, and loss-of function mutations of jak3 can be acquired in DS-TMD/AMKL.


Asunto(s)
Síndrome de Down/genética , Janus Quinasa 3/genética , Leucemia Megacarioblástica Aguda/genética , Mutación , Secuencia de Bases , Síndrome de Down/inmunología , Activación Enzimática , Eliminación de Gen , Humanos , Leucemia Megacarioblástica Aguda/complicaciones , Datos de Secuencia Molecular , Proteínas Tirosina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
19.
Br J Haematol ; 125(6): 729-42, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15180862

RESUMEN

Transient myeloproliferative disorder (TMD) is a unique, spontaneously regressing neoplasia specific to Down's syndrome (DS), affecting up to 10% of DS neonates. In 20-30% of cases, it reoccurs as progressive acute megakaryoblastic leukaemia (AMKL) at 2-4 years of age. The TMD and AMKL blasts are morphologically and immuno-phenotypically identical, and have the same acquired mutations in GATA1. We performed transcript profiling of nine TMD patients comparing them with seven AMKL patients using Affymetrix HG-U133A microarrays. Similar overall transcript profiles were observed between the two conditions, which were only separable by supervised clustering. Taqman analysis on 10 TMD and 10 AMKL RNA samples verified the expression of selected differing genes, with statistical significance (P < 0.05) by Student's t-test. The Taqman differences were also reproduced on TMD and AMKL blasts sorted by a fluorescence-activated cell sorter. Among the significant differences, CDKN2C, the effector of GATA1-mediated cell cycle arrest, was increased in AMKL but not TMD, despite the similar level of GATA1. In contrast, MYCN (neuroblastoma-derived oncogene) was expressed in TMD at a significantly greater level than in AMKL. MYCN has not previously been described in leukaemogenesis. Finally, the tumour antigen PRAME was identified as a specific marker for AMKL blasts, with no expression in TMD. This study provides markers discriminating TMD from AMKL-M7 in DS. These markers have the potential as predictive, diagnostic and therapeutic targets. In addition, the study provides further clues into the pathomechanisms discerning self-regressive from the progressive phenotype.


Asunto(s)
Antígenos de Neoplasias/genética , Síndrome de Down/inmunología , Leucemia Megacarioblástica Aguda/diagnóstico , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedad Aguda , Proteínas de Ciclo Celular/genética , Preescolar , Inhibidor p18 de las Quinasas Dependientes de la Ciclina , Diagnóstico Diferencial , Femenino , Marcadores Genéticos , Humanos , Recién Nacido , Masculino , Trastornos Mieloproliferativos/diagnóstico , Proteína Proto-Oncogénica N-Myc , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Remisión Espontánea , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/genética
20.
Lancet ; 361(9369): 1617-20, 2003 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-12747884

RESUMEN

Transient myeloid disorder is a unique self-regressing neoplasia specific to Down's syndrome. The transcription factor GATA1 is needed for normal growth and maturation of erythroid cells and megakaryocytes. Mutations in GATA1 have been reported in acute megakaryoblastic leukaemia in Down's syndrome. We aimed to investigate changes in GATA1 in patients with Down's syndrome and either transient myeloid disorder (n=10) or acute megakaryoblastic leukaemia (n=6). We recorded mutations eliminating exon 2 from GATA1 in all patients with transient myeloid disorder (age 0-24 days) and in all with acute megakaryoblastic leukaemia (age 14-38 months). The range of mutations did not differ between patients with each disorder. Patients with transient myeloid disorder with mutations in GATA1 can regress spontaneously to complete remission, and mutations do not necessarily predict later acute megakaryoblastic leukaemia.


Asunto(s)
Proteínas de Unión al ADN/genética , Síndrome de Down/genética , Leucemia Mieloide/genética , Factores de Transcripción/genética , Preescolar , Síndrome de Down/complicaciones , Factores de Unión al ADN Específico de las Células Eritroides , Exones/genética , Femenino , Factor de Transcripción GATA1 , Humanos , Lactante , Recién Nacido , Cariotipificación , Leucemia Mieloide/complicaciones , Masculino , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...