Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36672730

RESUMEN

Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.

2.
Biomolecules ; 12(10)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291693

RESUMEN

Changes in dopaminergic and noradrenergic transmission are considered to be the underlying cause of attention deficit and hyperactivity disorder (ADHD). Atomoxetine (ATX) is a selective norepinephrine transporter (NET) inhibitor that is currently used for ADHD treatment. In this study, we aimed to evaluate the effect of atomoxetine on the behavior and brain activity of dopamine transporter knockout (DAT-KO) rats, which are characterized by an ADHD-like behavioral phenotype. Prepulse inhibition (PPI) was assessed in DAT-KO and wild type rats after saline and ATX injections, as well as behavioral parameters in the Hebb-Williams maze and power spectra and coherence of electrophysiological activity. DAT-KO rats demonstrated a pronounced behavioral and electrophysiological phenotype, characterized by hyperactivity, increased number of errors in the maze, repetitive behaviors and disrupted PPI, changes in cortical and striatal power spectra and interareal coherence. Atomoxetine significantly improved PPI and decreased repetitive behaviors in DAT-KO rats and influenced behavior of wild-type rats. ATX also led to significant changes in power spectra and coherence of DAT-KO and wild type rats. Assessment of noradrenergic modulation effects in DAT-KO provides insight into the intricate interplay of monoaminergic systems, although further research is still required to fully understand the complexity of this interaction.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Ratas , Animales , Clorhidrato de Atomoxetina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Cognición , Norepinefrina/farmacología , Cuerpo Estriado
3.
Front Psychiatry ; 13: 851296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401264

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is manifested by a specific set of behavioral deficits such as hyperactivity, impulsivity, and inattention. The dopamine neurotransmitter system is postulated to be involved in the pathogenesis of ADHD. Guanfacine, a selective α2A-adrenoceptor agonist, is prescribed for ADHD treatment. ADHD also is known to be associated with impairment of multiple aspects of cognition, including spatial memory, however, it remains unclear how modulation of the norepinephrine system can affect these deficits. Hyperdopaminergic dopamine transporter knockout (DAT-KO) rats are a valuable model for investigating ADHD. The DAT-KO rats are hyperactive and deficient in spatial working memory. This work aimed to evaluate the effects of noradrenergic drugs on the fulfillment of spatial cognitive tasks by DAT-KO rats. The rats were tested in the Hebb - Williams maze during training and following noradrenergic drugs administration. The efficiency of spatial orientation was assessed as to how fast the animal finds an optimal way to the goal box. Testing in a new maze configuration allowed us to evaluate the effects of drug administration after the acquisition of the task rules. The behavioral variables such as the distance traveled, the time to reach the goal box, and the time spent in the error zones were analyzed. It has been observed that α2A-adrenoceptor agonist Guanfacine (0.25 mg/kg) had only a minimal inhibitory effect on hyperactivity of DAT-KO rats in the maze but significantly ameliorated their perseverative pattern of activity and reduced the time spent in the error zones. In contrast, α2A-adrenoceptor antagonist Yohimbine, at the dose of 1 mg/kg, increased the distance traveled by DAT-KO rats and elevated the number of perseverative reactions and the time spent in the error zones. Guanfacine caused minimal effects in wild-type rats, while Yohimbine altered several parameters reflecting a detrimental effect on the performance in the maze. These data indicate that modulation of α2A-adrenoceptor activity potently affects both dopamine-dependent hyperactivity and cognitive dysfunctions. Similar mechanisms may be involved in the beneficial effects of Guanfacine on cognitive deficits in ADHD patients. This study further supports the translational potential of DAT-KO rats for testing new pharmacological drugs.

4.
J Gen Physiol ; 153(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33683319

RESUMEN

Voltage-gated potassium (KV) channels can be opened by negatively charged resin acids and their derivatives. These resin acids have been proposed to attract the positively charged voltage-sensor helix (S4) toward the extracellular side of the membrane by binding to a pocket located between the lipid-facing extracellular ends of the transmembrane segments S3 and S4. By contrast to this proposed mechanism, neutralization of the top gating charge of the Shaker KV channel increased resin-acid-induced opening, suggesting other mechanisms and sites of action. Here, we explore the binding of two resin-acid derivatives, Wu50 and Wu161, to the activated/open state of the Shaker KV channel by a combination of in silico docking, molecular dynamics simulations, and electrophysiology of mutated channels. We identified three potential resin-acid-binding sites around S4: (1) the S3/S4 site previously suggested, in which positively charged residues introduced at the top of S4 are critical to keep the compound bound, (2) a site in the cleft between S4 and the pore domain (S4/pore site), in which a tryptophan at the top of S6 and the top gating charge of S4 keeps the compound bound, and (3) a site located on the extracellular side of the voltage-sensor domain, in a cleft formed by S1-S4 (the top-VSD site). The multiple binding sites around S4 and the anticipated helical-screw motion of the helix during activation make the effect of resin-acid derivatives on channel function intricate. The propensity of a specific resin acid to activate and open a voltage-gated channel likely depends on its exact binding dynamics and the types of interactions it can form with the protein in a state-specific manner.


Asunto(s)
Canales de Potasio , Canales de Potasio de la Superfamilia Shaker , Sitios de Unión , Fenómenos Biofísicos , Simulación por Computador , Canales de Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
5.
Virology ; 511: 240-248, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28915437

RESUMEN

The proteome and phosphoproteome of non-structural proteins of Adenovirus type 2 (Ad2) were time resolved using a developed mass spectrometry approach. These proteins are expressed by the viral genome and important for the infection process, but not part of the virus particle. We unambiguously confirm the existence of 95% of the viral proteins predicted to be encoded by the viral genome. Most non-structural proteins peaked in expression at late time post infection. We identified 27 non-redundant sites of phosphorylation on seven different non-structural proteins. The most heavily phosphorylated protein was the DNA binding protein (DBP) with 15 different sites. The phosphorylation occupancy rate could be calculated and monitored with time post infection for 15 phosphorylated sites on various proteins. In the DBP, phosphorylations with time-dependent relation were observed. The findings show the complexity of the Ad2 non-structural proteins and opens up a discussion for potential new drug targets.


Asunto(s)
Adenovirus Humanos/crecimiento & desarrollo , Regulación Viral de la Expresión Génica , Fosfoproteínas/análisis , Proteoma/análisis , Proteínas no Estructurales Virales/análisis , Línea Celular , Fibroblastos/virología , Humanos , Espectrometría de Masas , Factores de Tiempo
6.
Virus Res ; 238: 110-113, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28629901

RESUMEN

A hitherto predicted but undetected protein, C-168, in adenovirus type 2 (Ad2) has been identified using mass spectrometry (MS) based proteomics. The gene of this 17.7kDa protein is located on the forward strand in the major late transcription unit between base pairs 9294 and 9797. A tryptic peptide, derived from the C-terminal part of the protein, was identified with high amino acid sequence coverage. A candidate splice site for the corresponding mRNA is also presented. The protein sequence is unusual with repeats of serine, glycine and arginine. A bioinformatics prediction of protein function and localization is presented.


Asunto(s)
Adenovirus Humanos/química , Proteínas Virales/análisis , Adenovirus Humanos/genética , Espectrometría de Masas , Peso Molecular , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA