Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354052

RESUMEN

The application of machine learning to tasks involving volumetric biomedical imaging is constrained by the limited availability of annotated datasets of three-dimensional (3D) scans for model training. Here we report a deep-learning model pre-trained on 2D scans (for which annotated data are relatively abundant) that accurately predicts disease-risk factors from 3D medical-scan modalities. The model, which we named SLIViT (for 'slice integration by vision transformer'), preprocesses a given volumetric scan into 2D images, extracts their feature map and integrates it into a single prediction. We evaluated the model in eight different learning tasks, including classification and regression for six datasets involving four volumetric imaging modalities (computed tomography, magnetic resonance imaging, optical coherence tomography and ultrasound). SLIViT consistently outperformed domain-specific state-of-the-art models and was typically as accurate as clinical specialists who had spent considerable time manually annotating the analysed scans. Automating diagnosis tasks involving volumetric scans may save valuable clinician hours, reduce data acquisition costs and duration, and help expedite medical research and clinical applications.

2.
Res Sq ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045283

RESUMEN

We present SLIViT, a deep-learning framework that accurately measures disease-related risk factors in volumetric biomedical imaging, such as magnetic resonance imaging (MRI) scans, optical coherence tomography (OCT) scans, and ultrasound videos. To evaluate SLIViT, we applied it to five different datasets of these three different data modalities tackling seven learning tasks (including both classification and regression) and found that it consistently and significantly outperforms domain-specific state-of-the-art models, typically improving performance (ROC AUC or correlation) by 0.1-0.4. Notably, compared to existing approaches, SLIViT can be applied even when only a small number of annotated training samples is available, which is often a constraint in medical applications. When trained on less than 700 annotated volumes, SLIViT obtained accuracy comparable to trained clinical specialists while reducing annotation time by a factor of 5,000 demonstrating its utility to automate and expedite ongoing research and other practical clinical scenarios.

3.
Elife ; 122023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37342968

RESUMEN

Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than threefold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed the best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone.


Asunto(s)
Genoma , Programas Informáticos , Simulación por Computador , Genética de Población , Genómica
4.
Proc Natl Acad Sci U S A ; 119(34): e2205986119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969758

RESUMEN

The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.


Asunto(s)
Adaptación Fisiológica , Canidae , Filogenia , Adaptación Fisiológica/genética , Animales , Canidae/clasificación , Canidae/genética , Demografía , Variación Genética , Genómica , América del Sur
5.
J Comput Biol ; 29(9): 974-986, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35648072

RESUMEN

Synthesizing DNA molecules by design has become an essential tool in molecular biology and is expected to become ubiquitous in the coming decade. Successful design of a synthetic DNA molecule often requires satisfying multiple objectives, some of which may conflict with others. One particularly important objective is the elimination of unwanted protein binding sites, which may interfere with the desired function of the synthesized molecule. While most design tools offer this fundamental capability, they do not follow a systematic approach that guarantees elimination of all unwanted sites whenever a feasible solution exists. Furthermore, the algorithms these tools use (when published) are often quite naive and inefficient. We present a formal description of the binding site elimination problem and suggest several efficient algorithms that eliminate unwanted patterns with minimum interference to the desired function of the synthesized sequence. These algorithms are simple, efficient, and flexible and, therefore, can be easily incorporated in all existing DNA design tools, enhancing their design capabilities.


Asunto(s)
Algoritmos , ADN , Secuencia de Bases , Sitios de Unión/genética , Biología Computacional , ADN/química , Unión Proteica
6.
Proc Natl Acad Sci U S A ; 117(48): 30554-30565, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199636

RESUMEN

Numerous studies of emerging species have identified genomic "islands" of elevated differentiation against a background of relative homogeneity. The causes of these islands remain unclear, however, with some signs pointing toward "speciation genes" that locally restrict gene flow and others suggesting selective sweeps that have occurred within nascent species after speciation. Here, we examine this question through the lens of genome sequence data for five species of southern capuchino seedeaters, finch-like birds from South America that have undergone a species radiation during the last ∼50,000 generations. By applying newly developed statistical methods for ancestral recombination graph inference and machine-learning methods for the prediction of selective sweeps, we show that previously identified islands of differentiation in these birds appear to be generally associated with relatively recent, species-specific selective sweeps, most of which are predicted to be soft sweeps acting on standing genetic variation. Many of these sweeps coincide with genes associated with melanin-based variation in plumage, suggesting a prominent role for sexual selection. At the same time, a few loci also exhibit indications of possible selection against gene flow. These observations shed light on the complex manner in which natural selection shapes genome sequences during speciation.


Asunto(s)
Islas Genómicas , Modelos Genéticos , Animales , Biodiversidad , Variación Genética , Aprendizaje Automático
7.
Elife ; 92020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32573438

RESUMEN

The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.


Asunto(s)
Genética de Población , Biblioteca Genómica , Modelos Genéticos , Animales , Arabidopsis/genética , Perros/genética , Drosophila melanogaster/genética , Escherichia coli/genética , Genética de Población/métodos , Genética de Población/organización & administración , Genoma/genética , Genoma Humano/genética , Humanos , Pongo abelii/genética
8.
Sci Rep ; 9(1): 8329, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171819

RESUMEN

Within the Canidae, the African wild dog (Lycaon pictus) is the most specialized with regards to cursorial adaptations (specialized for running), having only four digits on their forefeet. In addition, this species is one of the few canids considered to be an obligate meat-eater, possessing a robust dentition for taking down large prey, and displays one of the most variable coat colorations amongst mammals. Here, we used comparative genomic analysis to investigate the evolutionary history and genetic basis for adaptations associated with cursoriality, hypercanivory, and coat color variation in African wild dogs. Genome-wide scans revealed unique amino acid deletions that suggest a mode of evolutionary digit loss through expanded apoptosis in the developing first digit. African wild dog-specific signals of positive selection also uncovered a putative mechanism of molar cusp modification through changes in genes associated with the sonic hedgehog (SHH) signaling pathway, required for spatial patterning of teeth, and three genes associated with pigmentation. Divergence time analyses suggest the suite of genomic changes we identified evolved ~1.7 Mya, coinciding with the diversification of large-bodied ungulates. Our results show that comparative genomics is a powerful tool for identifying the genetic basis of evolutionary changes in Canidae.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Canidae/genética , Genómica , Animales , Animales Salvajes/genética , Tipificación del Cuerpo , Biología Computacional , ADN/análisis , Dieta , Femenino , Genotipo , Proteínas Hedgehog/genética , Diente Molar , Método de Montecarlo , Pigmentación , Conducta Predatoria
9.
J Theor Biol ; 440: 88-99, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29277603

RESUMEN

Distance-based methods for phylogenetic reconstruction are based on a two-step approach: first, pairwise distances are computed from DNA sequences associated with a given set of taxa, and then these distances are used to reconstruct the phylogenetic relationships between taxa. Because the estimated distances are based on finite sequences, they are inherently noisy, and this noise may result in reconstruction errors. Previous attempts to improve reconstruction accuracy focused either on improving the robustness of reconstruction algorithms to this stochastic noise, or on improving the accuracy of the distance estimates. Here, we aim to further improve reconstruction accuracy by utilizing the basic observation that reconstruction algorithms are based on a series of comparisons between distances (or linear combinations of distances). We start by examining the relationship between the stochastic noise in the sequence data and the accuracy of the comparisons between pairwise distance estimates. This examination results in improved methods for distance comparison, which are shown to be as accurate as likelihood-based methods, while being much simpler and more efficient to compute. We then extend these methods to improve reconstruction accuracy of quartet trees, and examine some of the challenges moving forward.


Asunto(s)
Algoritmos , Modelos Genéticos , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Evolución Molecular , Funciones de Verosimilitud , Procesos Estocásticos
10.
Sci Adv ; 3(6): e1701233, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28630935

RESUMEN

A response to Hohenlohe et al.


Asunto(s)
Coyotes , Lobos , Animales , Análisis de Secuencia , Estados Unidos
11.
PLoS Genet ; 12(3): e1005851, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943675

RESUMEN

Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.


Asunto(s)
Genética de Población , Genómica , Metabolismo de los Lípidos/genética , Selección Genética , Animales , Demografía , Perros , Genoma , Polimorfismo de Nucleótido Simple
12.
Nature ; 530(7591): 429-33, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26886800

RESUMEN

It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000-65,000 years ago. Here we analyse the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago. By contrast, we do not detect such a genetic contribution in the Denisovan or the two European Neanderthals. We conclude that in addition to later interbreeding events, the ancestors of Neanderthals from the Altai Mountains and early modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously thought.


Asunto(s)
Flujo Génico/genética , Hombre de Neandertal/genética , Altitud , Animales , Teorema de Bayes , Cromosomas Humanos Par 21/genética , Croacia/etnología , Genoma Humano/genética , Genómica , Haplotipos/genética , Heterocigoto , Humanos , Hibridación Genética/genética , Filogenia , Densidad de Población , Siberia , España/etnología , Factores de Tiempo
13.
Sci Adv ; 2(7): e1501714, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29713682

RESUMEN

Protection of populations comprising admixed genomes is a challenge under the Endangered Species Act (ESA), which is regarded as the most powerful species protection legislation ever passed in the United States but lacks specific provisions for hybrids. The eastern wolf is a newly recognized wolf-like species that is highly admixed and inhabits the Great Lakes and eastern United States, a region previously thought to be included in the geographic range of only the gray wolf. The U.S. Fish and Wildlife Service has argued that the presence of the eastern wolf, rather than the gray wolf, in this area is grounds for removing ESA protection (delisting) from the gray wolf across its geographic range. In contrast, the red wolf from the southeastern United States was one of the first species protected under the ESA and was protected despite admixture with coyotes. We use whole-genome sequence data to demonstrate a lack of unique ancestry in eastern and red wolves that would not be expected if they represented long divergent North American lineages. These results suggest that arguments for delisting the gray wolf are not valid. Our findings demonstrate how a strict designation of a species under the ESA that does not consider admixture can threaten the protection of endangered entities. We argue for a more balanced approach that focuses on the ecological context of admixture and allows for evolutionary processes to potentially restore historical patterns of genetic variation.

14.
Genome Res ; 26(2): 163-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26680994

RESUMEN

The gray wolf (Canis lupus) is a widely distributed top predator and ancestor of the domestic dog. To address questions about wolf relationships to each other and dogs, we assembled and analyzed a data set of 34 canine genomes. The divergence between New and Old World wolves is the earliest branching event and is followed by the divergence of Old World wolves and dogs, confirming that the dog was domesticated in the Old World. However, no single wolf population is more closely related to dogs, supporting the hypothesis that dogs were derived from an extinct wolf population. All extant wolves have a surprisingly recent common ancestry and experienced a dramatic population decline beginning at least ∼30 thousand years ago (kya). We suggest this crisis was related to the colonization of Eurasia by modern human hunter-gatherers, who competed with wolves for limited prey but also domesticated them, leading to a compensatory population expansion of dogs. We found extensive admixture between dogs and wolves, with up to 25% of Eurasian wolf genomes showing signs of dog ancestry. Dogs have influenced the recent history of wolves through admixture and vice versa, potentially enhancing adaptation. Simple scenarios of dog domestication are confounded by admixture, and studies that do not take admixture into account with specific demographic models are problematic.


Asunto(s)
Perros/genética , Lobos/genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Femenino , Genoma , Hibridación Genética , Masculino , Cadenas de Markov , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Análisis de Secuencia de ADN
15.
Mol Ecol ; 24(16): 4238-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26175196

RESUMEN

Recently diverged taxa provide the opportunity to search for the genetic basis of the phenotypes that distinguish them. Genomic scans aim to identify loci that are diverged with respect to an otherwise weakly differentiated genetic background. These loci are candidates for being past targets of selection because they behave differently from the rest of the genome that has either not yet differentiated or that may cross species barriers through introgressive hybridization. Here we use a reduced-representation genomic approach to explore divergence among six species of southern capuchino seedeaters, a group of recently radiated sympatric passerine birds in the genus Sporophila. For the first time in these taxa, we discovered a small proportion of markers that appeared differentiated among species. However, when assessing the significance of these signatures of divergence, we found that similar patterns can also be recovered from random grouping of individuals representing different species. A detailed demographic inference indicates that genetic differences among Sporophila species could be the consequence of neutral processes, which include a very large ancestral effective population size that accentuates the effects of incomplete lineage sorting. As these neutral phenomena can generate genomic scan patterns that mimic those of markers involved in speciation and phenotypic differentiation, they highlight the need for caution when ascertaining and interpreting differentiated markers between species, especially when large numbers of markers are surveyed. Our study provides new insights into the demography of the southern capuchino radiation and proposes controls to distinguish signal from noise in similar genomic scans.


Asunto(s)
Especiación Genética , Passeriformes/genética , Simpatría , Animales , Teorema de Bayes , Femenino , Flujo Génico , Sitios Genéticos , Genética de Población , Genómica , Masculino , Modelos Genéticos , Passeriformes/clasificación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , América del Sur
16.
Nat Genet ; 47(3): 276-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25599402

RESUMEN

We describe a new computational method for estimating the probability that a point mutation at each position in a genome will influence fitness. These 'fitness consequence' (fitCons) scores serve as evolution-based measures of potential genomic function. Our approach is to cluster genomic positions into groups exhibiting distinct 'fingerprints' on the basis of high-throughput functional genomic data, then to estimate a probability of fitness consequences for each group from associated patterns of genetic polymorphism and divergence. We have generated fitCons scores for three human cell types on the basis of public data from ENCODE. In comparison with conventional conservation scores, fitCons scores show considerably improved prediction power for cis regulatory elements. In addition, fitCons scores indicate that 4.2-7.5% of nucleotides in the human genome have influenced fitness since the human-chimpanzee divergence, and they suggest that recent evolutionary turnover has had limited impact on the functional content of the genome.


Asunto(s)
Aptitud Genética , Genoma Humano , Mutación Puntual , Animales , Línea Celular , Evolución Molecular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pan troglodytes/genética , Polimorfismo Genético , Probabilidad , Secuencias Reguladoras de Ácidos Nucleicos
17.
RNA ; 20(8): 1195-209, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24942624

RESUMEN

The propensity of animal miRNAs to regulate targets bearing modest complementarity, most notably via pairing with miRNA positions ∼2-8 (the "seed"), is believed to drive major aspects of miRNA evolution. First, minimal targeting requirements have allowed most conserved miRNAs to acquire large target cohorts, thus imposing strong selection on miRNAs to maintain their seed sequences. Second, the modest pairing needed for repression suggests that evolutionarily nascent miRNAs may generally induce net detrimental, rather than beneficial, regulatory effects. Hence, levels and activities of newly emerged miRNAs are expected to be limited to preserve the status quo of gene expression. In this study, we unexpectedly show that Drosophila testes specifically express a substantial miRNA population that contravenes these tenets. We find that multiple genomic clusters of testis-restricted miRNAs harbor recently evolved miRNAs, whose experimentally verified orthologs exhibit divergent sequences, even within seed regions. Moreover, this class of miRNAs exhibits higher expression and greater phenotypic capacities in transgenic misexpression assays than do non-testis-restricted miRNAs of similar evolutionary age. These observations suggest that these testis-restricted miRNAs may be evolving adaptively, and several methods of evolutionary analysis provide strong support for this notion. Consistent with this, proof-of-principle tests show that orthologous miRNAs with divergent seeds can distinguish target sensors in a species-cognate manner. Finally, we observe that testis-restricted miRNA clusters exhibit extraordinary dynamics of miRNA gene flux in other Drosophila species. Altogether, our findings reveal a surprising tissue-directed influence of miRNA evolution, involving a distinct mode of miRNA function connected to adaptive gene regulation in the testis.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Drosophila/genética , Drosophila/metabolismo , MicroARNs/genética , Familia de Multigenes , Testículo/metabolismo , Animales , Secuencia de Bases , Análisis por Conglomerados , Secuencia Conservada , Evolución Molecular , Expresión Génica , Perfilación de la Expresión Génica , Variación Genética , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Fenotipo , Alineación de Secuencia
18.
PLoS Genet ; 10(5): e1004342, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24831947

RESUMEN

The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the "ancestral recombination graph" (ARG), a complete record of coalescence and recombination events in the history of the sample. However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here, we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian genomes. The key idea of our approach is to sample an ARG of [Formula: see text] chromosomes conditional on an ARG of [Formula: see text] chromosomes, an operation we call "threading." Using techniques based on hidden Markov models, we can perform this threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the posterior distribution over ARGs and is effective in recovering various features of the ARG for dozens of sequences generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry associated with balancing selection and reductions in allele age in sites under directional selection. The patterns we observe near protein-coding genes are consistent with a primary influence from background selection rather than hitchhiking, although we cannot rule out a contribution from recurrent selective sweeps.


Asunto(s)
Evolución Molecular , Genoma Humano , Recombinación Genética , Selección Genética/genética , Algoritmos , Simulación por Computador , Humanos , Cadenas de Markov , Modelos Genéticos , Método de Montecarlo
19.
PLoS Genet ; 10(1): e1004016, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453982

RESUMEN

To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11-16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.


Asunto(s)
Amilasas/genética , Animales Domésticos/genética , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Animales , ADN Mitocondrial/genética , Dieta , Perros , Variación Genética , Filogenia , Densidad de Población , Lobos/clasificación , Lobos/genética
20.
Nat Genet ; 45(7): 723-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749186

RESUMEN

For decades, it has been hypothesized that gene regulation has had a central role in human evolution, yet much remains unknown about the genome-wide impact of regulatory mutations. Here we use whole-genome sequences and genome-wide chromatin immunoprecipitation and sequencing data to demonstrate that natural selection has profoundly influenced human transcription factor binding sites since the divergence of humans from chimpanzees 4-6 million years ago. Our analysis uses a new probabilistic method, called INSIGHT, for measuring the influence of selection on collections of short, interspersed noncoding elements. We find that, on average, transcription factor binding sites have experienced somewhat weaker selection than protein-coding genes. However, the binding sites of several transcription factors show clear evidence of adaptation. Several measures of selection are strongly correlated with predicted binding affinity. Overall, regulatory elements seem to contribute substantially to both adaptive substitutions and deleterious polymorphisms with key implications for human evolution and disease.


Asunto(s)
Genoma Humano , Selección Genética/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Mapeo Cromosómico , Simulación por Computador , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos , Modelos Estadísticos , Mutación/fisiología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...