Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1705: 464168, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37348225

RESUMEN

Plant seeds, as those from milk thistle (Silybum marianum), are a valuable source of nonpolar and polar compounds with potentially interesting biological activity. The main nonpolar compounds are triglycerides, which are also the main components of all vegetable oils. In addition, specific polar compounds - flavonolignans, called silymarin, have been found in large amounts in milk thistle seeds extract. These flavonoids derivatives have different biological activity, for instance hepatoprotective effects. In order to extract and analyze both nonpolar (triglycerides) and polar compounds (flavonolignans) from milk thistle seeds through a sequential methodology, an on-line supercritical fluid extraction - supercritical fluid chromatography (SFE-SFC) method was developed. Different ways of transferring the extracts from SFE to SFC (i.e. direct on-column transfer and loop transfer) were compared, and particularly for their effect on chromatographic quality. In this respect, nonpolar and polar compounds caused different issues, especially as polar compounds required a significant portion of co-solvent in the extraction step, favoring early elution in the chromatographic column. First, on-line SFE-SFC was used for triglycerides analysis and allowed the comparison of transfer modes. Then, on-line kinetics were performed to measure defatting time before polar molecules extraction. Finally, the eventual benefit of loop transfer was also investigated for the analysis of flavonolignans, polar molecules whose analysis can be difficult by on-line SFE-SFC. The aim of this paper is to discuss the versatility of on-line SFE-SFC and how challenging the coupling can be, especially when both non-polar and polar molecules must be analyzed independently in a single sample.


Asunto(s)
Cromatografía con Fluido Supercrítico , Flavonolignanos , Cromatografía con Fluido Supercrítico/métodos , Flavonolignanos/análisis , Silybum marianum/química , Triglicéridos/análisis , Semillas/química
2.
J Chromatogr A ; 1687: 463667, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36463646

RESUMEN

When starting a method development in supercritical fluid chromatography (SFC), the first step is usually to screen several stationary phases based on previous experience or simply based on what is available in the laboratory. However, as there are now a large number of stationary phases available for SFC, the choice of an adequate set of columns to rapidly achieve a satisfying result can be difficult. In this project, 16 columns comprising a wide diversity of stationary phases and polarities ranging from the most polar (like bare silica gel) to the least polar (like octadecylbonded-silica) were compared, based on the gradient analysis of 129 probe compounds. The set mostly comprised active pharmaceutical ingredients, natural products and a few metabolites. The columns were ranked with the help of Derringer desirability functions taking account of (i) the number of compounds eluted from the column, (ii) the elution time in a suitable time frame, (iii) the average peak width, (iv) the average peak symmetry and (v) the spreading of retention along the gradient time. The five criteria selected showed no correlation. Overall, it appeared that those columns that had a high overall score were good for several reasons, like bare silica gel, propanediol-bonded silica or pentabromobenzyloxy-bonded silica. Initially, the columns had been screened with a gradient elution starting from 5% co-solvent and ending with 50% co-solvent in CO2. However, for some most retentive columns like amide-bonded silica, too many compounds remained non-eluted from the column. To examine this column more fairly, a second elution gradient was applied that ended with 100% co-solvent. This proved effective in restoring good overall performance through the elution of the most polar compounds.


Asunto(s)
Productos Biológicos , Cromatografía con Fluido Supercrítico , Cromatografía con Fluido Supercrítico/métodos , Gel de Sílice , Dióxido de Carbono/química , Solventes , Dióxido de Silicio
3.
J Pharm Biomed Anal ; 203: 114206, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34146950

RESUMEN

Modern supercritical fluid chromatography (SFC) is now a well-established technique, especially in the field of pharmaceutical analysis. We recently demonstrated the transferability and the reproducibility of a SFC-UV method for pharmaceutical impurities by means of an inter-laboratory study. However, as this study involved only one brand of SFC instrumentation (Waters®), the present study extends the purpose to multi-instrumentation evaluation. Specifically, three instrument types, namely Agilent®, Shimadzu®, and Waters®, were included through 21 laboratories (n = 7 for each instrument). First, method transfer was performed to assess the separation quality and to set up the specific instrument parameters of Agilent® and Shimadzu® instruments. Second, the inter-laboratory study was performed following a protocol defined by the sending lab. Analytical results were examined regarding consistencies within- and between-laboratories criteria. Afterwards, the method reproducibility was estimated taking into account variances in replicates, between-days and between-laboratories. Reproducibility variance was larger than that observed during the first study involving only one single type of instrumentation. Indeed, we clearly observed an 'instrument type' effect. Moreover, the reproducibility variance was larger when considering all instruments than each type separately which can be attributed to the variability induced by the instrument configuration. Nevertheless, repeatability and reproducibility variances were found to be similar than those described for LC methods; i.e. reproducibility as %RSD was around 15 %. These results highlighted the robustness and the power of modern analytical SFC technologies to deliver accurate results for pharmaceutical quality control analysis.


Asunto(s)
Cromatografía con Fluido Supercrítico , Preparaciones Farmacéuticas , Control de Calidad , Reproducibilidad de los Resultados
4.
J Chromatogr A ; 1639: 461923, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33524935

RESUMEN

Achiral packed column supercritical fluid chromatography (SFC) has shown an important regain of interest in academic and industrial laboratories in the recent years. In relation to this increased concern, major instrument manufacturers have designed some stationary phases specifically for SFC use. SFC stationary phases have been widely examined over the last two decades, based on the use of linear solvation energy relationships (LSER), which relate analyte retention to its properties and to the interaction capabilities of the chromatographic system. The method provides some understanding on retention mechanisms (normal phase, reversed phase or mixed-mode) and the possibility to compare stationary phases on a rational basis, especially through a spider diagram providing a visual classification. The latter can be used as a primary tool to select complementary stationary phases to be screened for any separation at early stages of method development, before optimization steps. In this context, the characterization of the 14 columns from the Shim-pack UC series (Shimadzu Corporation, Kyoto, Japan), which are dedicated to SFC and more broadly to unified chromatography (UC), was performed, using the LSER methodology. As in previous works, seven descriptors, including five Abraham descriptors (E, S, A, B, V) and two descriptors describing positive and negative charges (D- and D+) were first employed to describe interactions with neutral and charged analytes. Secondly, two more descriptors were introduced, which were previously employed solely for the characterization of enantioselective systems and expressing shape features of the analytes (flexibility F and globularity G). They brought additional insight into the retention mechanisms, showing how spatial insertion of the analytes in some stationary phases is contributing to shape separation capabilities and how folding possibilities in flexible molecules is unfavorable to retention in other stationary phases.


Asunto(s)
Cromatografía con Fluido Supercrítico/métodos , Análisis por Conglomerados , Japón , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...