Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Endocrinol (Paris) ; 85(3): 259-262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38871499

RESUMEN

Glucocorticoids (GCs) play an important role in metabolic adaptation, regulating carbohydrate-lipid homeostasis and the immune system. Because they also have anti-inflammatory and immunosuppressive properties, synthetic analogues of GCs have been developed and are widely used in the treatment of chronic inflammatory conditions and in organ transplantation. GCs are among the most commonly prescribed drugs in the world. However, long term and high GC doses can cause side effects such as GC-induced diabetes and lipodystrophy. In recent years, a large number of independent studies have reported the effects of constitutive and adipocyte-specific deletion of the GC receptor (GR) in mice under different diets and treatments, resulting in contrasting phenotypes. To avoid potential compensatory mechanisms associated with the constitutive adipocyte GR silencing during adipose tissue development, our team has generated an inducible mouse model of GR deletion specifically in the adipocyte (AdipoGR-KO). Using this mouse model, we were able to demonstrate the critical role of the adipocyte GR in GC-induced metabolic changes. Indeed, under conditions of hypercorticism, AdipoGR-KO mice showed an improvement in glucose tolerance and insulin sensitivity, as well as in lipid profile, despite a massive increase in adiposity. This result is explained by a densification of adipose tissue vascularization, highlighting the repressive role of adipocyte GR in the healthy expansion of this tissue. Our work has largely contributed to the demonstration of the important role of the adipocyte GR in the physiology and pathophysiology of the adipose tissue and its impact on energy homeostasis.


Asunto(s)
Tejido Adiposo , Glucocorticoides , Animales , Glucocorticoides/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Humanos , Ratones , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Ratones Noqueados , Resistencia a la Insulina/fisiología
2.
Diabetes ; 73(2): 211-224, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37963392

RESUMEN

In humans, glucocorticoids (GCs) are commonly prescribed because of their anti-inflammatory and immunosuppressive properties. However, high doses of GCs often lead to side effects, including diabetes and lipodystrophy. We recently reported that adipocyte glucocorticoid receptor (GR)-deficient (AdipoGR-KO) mice under corticosterone (CORT) treatment exhibited a massive adipose tissue (AT) expansion associated with a paradoxical improvement of metabolic health compared with control mice. However, whether GR may control adipose development remains unclear. Here, we show a specific induction of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic vascular endothelial growth factor A (VEGFA) expression in GR-deficient adipocytes of AdipoGR-KO mice compared with control mice, together with an increased adipose vascular network, as assessed by three-dimensional imaging. GR activation reduced HIF-1α recruitment to the Vegfa promoter resulting from Hif-1α downregulation at the transcriptional and posttranslational levels. Importantly, in CORT-treated AdipoGR-KO mice, the blockade of VEGFA by a soluble decoy receptor prevented AT expansion and the healthy metabolic phenotype. Finally, in subcutaneous AT from patients with Cushing syndrome, higher VEGFA expression was associated with a better metabolic profile. Collectively, these results highlight that adipocyte GR negatively controls AT expansion and metabolic health through the downregulation of the major angiogenic effector VEGFA and inhibition of vascular network development.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Humanos , Ratones , Animales , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Angiogénesis , Adipocitos/metabolismo , Obesidad/metabolismo , Corticosterona/farmacología , Corticosterona/metabolismo , Tejido Adiposo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
3.
Mol Metab ; 77: 101807, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717665

RESUMEN

OBJECTIVES: Metformin is the first line therapy recommended for type 2 diabetes. However, the precise mechanism of action remains unclear and up to a quarter of patients show some degree of intolerance to the drug, with a similar number showing poor response to treatment, limiting its effectiveness. A better understanding of the mechanism of action of metformin may improve its clinical use. SLC2A2 (GLUT2) is a transmembrane facilitated glucose transporter, with important roles in the liver, gut and pancreas. Our group previously identified single nucleotide polymorphisms in the human SLC2A2 gene, which were associated with reduced transporter expression and an improved response to metformin treatment. The aims of this study were to model Slc2a2 deficiency and measure the impact on glucose homoeostasis and metformin response in mice. METHODS: We performed extensive metabolic phenotyping and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography (PET) analysis of gut glucose uptake in high-fat diet-fed (HFD) mice with whole-body reduced Slc2a2 (Slc2a2+/-) and intestinal Slc2a2 KO, to assess the impact of metformin treatment. RESULTS: Slc2a2 partial deficiency had no major impact on body weight and insulin sensitivity, however mice with whole-body reduced Slc2a2 expression (Slc2a2+/-) developed an age-related decline in glucose homoeostasis (as measured by glucose tolerance test) compared to wild-type (Slc2a2+/+) littermates. Glucose uptake into the gut from the circulation was enhanced by metformin exposure in Slc2a2+/+ animals fed HFD and this action of the drug was significantly higher in Slc2a2+/- animals. However, there was no effect of specifically knocking-out Slc2a2 in the mouse intestinal epithelial cells. CONCLUSIONS: Overall, this work identifies a differential metformin response, dependent on expression of the SLC2A2 glucose transporter, and also adds to the growing evidence that metformin efficacy includes modifying glucose transport in the gut. We also describe a novel and important role for this transporter in maintaining efficient glucose homoeostasis during ageing.

4.
Eur J Endocrinol ; 183(3): 297-306, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32570209

RESUMEN

OBJECTIVE: Glucocorticoids (GC) are associated with increased cardiovascular morbidity despite increased HDL-C concentration. HDL-mediated cholesterol efflux, a major anti-atherogenic property of HDL particles, is negatively associated with CVD risk. We aimed to determine whether HDL-mediated cholesterol efflux was influenced by GC. DESIGN: Prospective, observational study. METHODS: Lipid parameters, HDL composition, HDL-mediated cholesterol efflux, cholesteryl ester transfer protein, phospholipid transfer protein and lecithin cholesterol acyl-transferase (LCAT) activities were determined in ten patients with giant cell arteritis before and 3 months after GC introduction and in seven control subjects. HDL concentration and composition, HDL-mediated cholesterol efflux and LCAT activity were determined in GC-treated mice. RESULTS: In patients, HDL-C concentration was higher after than before treatment GC-treatment (P = 0.002), while HDL-mediated cholesterol efflux was decreased (P = 0.008) and negatively associated with the proportion of cholesteryl ester in HDL (P = 0.04), independently of CRP. As well, in mice, HDL-C level was increased after GC exposure (P = 0.04) and HDL-mediated cholesterol efflux decreased (P = 0.04). GC-treated patients had higher cholesteryl ester content in HDL, higher HDL2-to-HDL3 ratio and higher LCAT activity than before treatment (P = 0.008, P = 0.02 and P = 0.004, respectively). CONCLUSIONS: We report, for the first time, that in patients with giant cell arteritis and mice treated with GC, HDL-mediated cholesterol efflux was impaired by GC besides an increased HDL-C level. This impaired HDL functionality, possibly related to HDL enrichment in cholesteryl ester, could contribute to the increased CVD risk observed in GC-treated patients. Further studies are needed in larger populations, to further decipher the effect of GC on HDL.


Asunto(s)
HDL-Colesterol/sangre , Colesterol/metabolismo , Glucocorticoides/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Estudios Prospectivos , Esfingolípidos/metabolismo
5.
FASEB J ; 33(6): 7126-7142, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30939042

RESUMEN

Current fructose consumption levels often overwhelm the intestinal capacity to absorb fructose. We investigated the impact of fructose malabsorption on intestinal endocrine function and addressed the role of the microbiota in this process. To answer this question, a mouse model of moderate fructose malabsorption [ketohexokinase mutant (KHK)-/-] and wild-type (WT) littermate mice were used and received a 20%-fructose (KHK-F and WT-F) or 20%-glucose diet. Cholecystokinin (Cck) mRNA and protein expression in the ileum and cecum, as well as preproglucagon (Gcg) and neurotensin (Nts) mRNA expression in the cecum, increased in KHK-F mice. In KHK-F mice, triple-label immunohistochemistry showed major up-regulation of CCK in enteroendocrine cells (EECs) that were glucagon-like peptide-1 (GLP-1)+/Peptide YY (PYY-) in the ileum and colon and GLP-1-/PYY- in the cecum. The cecal microbiota composition was drastically modified in the KHK-F in association with an increase in glucose, propionate, succinate, and lactate concentrations. Antibiotic treatment abolished fructose malabsorption-dependent induction of cecal Cck mRNA expression and, in mouse GLUTag and human NCI-H716 cells, Cck mRNA expression levels increased in response to propionate, both suggesting a microbiota-dependent process. Fructose reaching the lower intestine can modify the composition and metabolism of the microbiota, thereby stimulating the production of CCK from the EECs possibly in response to propionate.-Zhang, X., Grosfeld, A., Williams, E., Vasiliauskas, D., Barretto, S., Smith, L., Mariadassou, M., Philippe, C., Devime, F., Melchior, C., Gourcerol, G., Dourmap, N., Lapaque, N., Larraufie, P., Blottière, H. M., Herberden, C., Gerard, P., Rehfeld, J. F., Ferraris, R. P., Fritton, J. C., Ellero-Simatos, S., Douard, V. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism.


Asunto(s)
Ciego/metabolismo , Colecistoquinina/metabolismo , Fructosa/metabolismo , Fructosa/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Íleon/metabolismo , Animales , Ciego/efectos de los fármacos , Línea Celular , Fructoquinasas/genética , Fructoquinasas/metabolismo , Fructosa/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Íleon/efectos de los fármacos , Ratones , Ratones Noqueados
6.
Science ; 359(6382): 1376-1383, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29519916

RESUMEN

Obesity, diabetes, and related manifestations are associated with an enhanced, but poorly understood, risk for mucosal infection and systemic inflammation. Here, we show in mouse models of obesity and diabetes that hyperglycemia drives intestinal barrier permeability, through GLUT2-dependent transcriptional reprogramming of intestinal epithelial cells and alteration of tight and adherence junction integrity. Consequently, hyperglycemia-mediated barrier disruption leads to systemic influx of microbial products and enhanced dissemination of enteric infection. Treatment of hyperglycemia, intestinal epithelial-specific GLUT2 deletion, or inhibition of glucose metabolism restores barrier function and bacterial containment. In humans, systemic influx of intestinal microbiome products correlates with individualized glycemic control, indicated by glycated hemoglobin levels. Together, our results mechanistically link hyperglycemia and intestinal barrier function with systemic infectious and inflammatory consequences of obesity and diabetes.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Infecciones por Escherichia coli/fisiopatología , Hiperglucemia/fisiopatología , Enfermedades Intestinales/microbiología , Enfermedades Intestinales/fisiopatología , Animales , Células CACO-2 , Reprogramación Celular , Citrobacter rodentium , Escherichia coli Enteropatógena , Microbioma Gastrointestinal , Eliminación de Gen , Glucosa/metabolismo , Glucosa/farmacología , Transportador de Glucosa de Tipo 2/genética , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiopatología , Ratones , Ratones Endogámicos , Obesidad/fisiopatología , Permeabilidad , Receptores de Leptina/genética , Estreptozocina
7.
Mol Metab ; 6(1): 61-72, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28123938

RESUMEN

OBJECTIVE: Intestinal glucose absorption is orchestrated by specialized glucose transporters such as SGLT1 and GLUT2. However, the role of GLUT2 in the regulation of glucose absorption remains to be fully elucidated. METHODS: We wanted to evaluate the role of GLUT2 on glucose absorption and glucose homeostasis after intestinal-specific deletion of GLUT2 in mice (GLUT2ΔIEC mice). RESULTS: As anticipated, intestinal GLUT2 deletion provoked glucose malabsorption as visualized by the delay in the distribution of oral sugar in tissues. Consequences of intestinal GLUT2 deletion in GLUT2ΔIEC mice were limiting body weight gain despite normal food intake, improving glucose tolerance, and increasing ketone body production. These features were reminiscent of calorie restriction. Other adaptations to intestinal GLUT2 deletion were reduced microvillus length and altered gut microbiota composition, which was associated with improved inflammatory status. Moreover, a reduced density of glucagon-like peptide-1 (GLP-1) positive cells was compensated by increased GLP-1 content per L-cell, suggesting a preserved enteroendocrine function in GLUT2ΔIEC mice. CONCLUSIONS: Intestinal GLUT2 modulates glucose absorption and constitutes a control step for the distribution of dietary sugar to tissues. Consequently, metabolic and gut homeostasis are improved in the absence of functional GLUT2 in the intestine, thus mimicking calorie restriction.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Glucosa/metabolismo , Animales , Glucemia/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/fisiología , Homeostasis , Absorción Intestinal , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Transportador 1 de Sodio-Glucosa/metabolismo , Distribución Tisular
8.
J Nutr Sci ; 4: e22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157580

RESUMEN

The enterohormone glucagon-like peptide-1 (GLP-1) is required to amplify glucose-induced insulin secretion that facilitates peripheral glucose utilisation. Alteration in GLP-1 secretion during obesity has been reported but is still controversial. Due to the high adaptability of intestinal cells to environmental changes, we hypothesised that the density of GLP-1-producing cells could be modified by nutritional factors to prevent the deterioration of metabolic condition in obesity. We quantified L-cell density in jejunum samples collected during Roux-en-Y gastric bypass in forty-nine severely obese subjects analysed according to their fat consumption. In mice, we deciphered the mechanisms by which a high-fat diet (HFD) makes an impact on enteroendocrine cell density and function. L-cell density in the jejunum was higher in obese subjects consuming >30 % fat compared with low fat eaters. Mice fed a HFD for 8 weeks displayed an increase in GLP-1-positive cells in the jejunum and colon accordingly to GLP-1 secretion. The regulation by the HFD appears specific to GLP-1-producing cells, as the number of PYY (peptide YY)-positive cells remained unchanged. Moreover, genetically obese ob/ob mice did not show alteration of GLP-1-positive cell density in the jejunum or colon, suggesting that obesity per se is not sufficient to trigger the mechanism. The higher L-cell density in HFD-fed mice involved a rise in L-cell terminal differentiation as witnessed by the increased expression of transcription factors downstream of neurogenin3 (Ngn3). We suggest that the observed increase in GLP-1-positive cell density triggered by high fat consumption in humans and mice might favour insulin secretion and therefore constitute an adaptive response of the intestine to balance diet-induced insulin resistance.

9.
J Biol Chem ; 288(43): 31080-92, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23986439

RESUMEN

The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and ß cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced ß cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic ß cell development and insulin secretion.


Asunto(s)
Diferenciación Celular/fisiología , Transportador de Glucosa de Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mutación Missense , Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Animales , Transporte Biológico Activo/genética , Línea Celular Tumoral , Glucosa/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/genética , Humanos , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , Ratas , Transducción de Señal , Xenopus laevis
10.
Am J Physiol Endocrinol Metab ; 298(5): E1078-87, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20179244

RESUMEN

The sugar transporter GLUT2, present in several tissues of the gut-brain axis, has been reported to be involved in the control of food intake. GLUT2 is a sugar transporter sustaining energy production in the cell, but it can also function as a receptor for extracellular glucose. A glucose-signaling pathway is indeed triggered, independently of glucose metabolism, through its large cytoplasmic loop domain. However, the contribution of the receptor function over the transporter function of GLUT2 in the control of food intake remains to be determined. Thus, we generated transgenic mice that express a GLUT2-loop domain, blocking the detection of glucose but leaving GLUT2-dependent glucose transport unaffected. Inhibiting GLUT2-mediated glucose detection augmented daily food intake by a mechanism that increased the meal size but not the number of meals. Peripheral hormones (ghrelin, insulin, leptin) were unaffected, leading to a focus on central aspects of feeding behavior. We found defects in c-Fos activation by glucose in the arcuate nucleus and changes in the amounts of TRH and orexin neuropeptide mRNA, which are relevant to poorly controlled meal size. Our data provide evidence that glucose detection by GLUT2 contributes to the control of food intake by the hypothalamus. The sugar transporter receptor, i.e., "transceptor" GLUT2, may constitute a drug target to treat eating disorders and associated metabolic diseases, particularly by modulating its receptor function without affecting vital sugar provision by its transporter function.


Asunto(s)
Ingestión de Alimentos/fisiología , Transportador de Glucosa de Tipo 2/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Análisis de Varianza , Animales , Transporte Biológico/fisiología , Peso Corporal/fisiología , Recuento de Células , Metabolismo Energético , Conducta Alimentaria/fisiología , Ghrelina/sangre , Transportador de Glucosa de Tipo 2/genética , Homeostasis/fisiología , Inmunohistoquímica , Insulina/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leptina/sangre , Ratones , Ratones Transgénicos , Neuropéptidos/genética , Neuropéptidos/metabolismo , Orexinas , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Estadísticas no Paramétricas , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo
11.
Mol Cell Biol ; 28(10): 3386-400, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18332118

RESUMEN

Cell culture studies have implicated the oxygen-sensitive hypoxia-inducible factor (HIF) prolyl hydroxylase PHD3 in the regulation of neuronal apoptosis. To better understand this function in vivo, we have created PHD3(-/-) mice and analyzed the neuronal phenotype. Reduced apoptosis in superior cervical ganglion (SCG) neurons cultured from PHD3(-/-) mice is associated with an increase in the number of cells in the SCG, as well as in the adrenal medulla and carotid body. Genetic analysis by intercrossing PHD3(-/-) mice with HIF-1a(+/-) and HIF-2a(+/-) mice demonstrated an interaction with HIF-2alpha but not HIF-1alpha, supporting the nonredundant involvement of a PHD3-HIF-2alpha pathway in the regulation of sympathoadrenal development. Despite the increased number of cells, the sympathoadrenal system appeared hypofunctional in PHD3(-/-) mice, with reduced target tissue innervation, adrenal medullary secretory capacity, sympathoadrenal responses, and systemic blood pressure. These observations suggest that the role of PHD3 in sympathoadrenal development extends beyond simple control of cell survival and organ mass, with functional PHD3 being required for proper anatomical and physiological integrity of the system. Perturbation of this interface between developmental and adaptive signaling by hypoxic, metabolic, or other stresses could have important effects on key sympathoadrenal functions, such as blood pressure regulation.


Asunto(s)
Glándulas Suprarrenales/anomalías , Hipotensión/etiología , Procolágeno-Prolina Dioxigenasa/deficiencia , Sistema Nervioso Simpático/anomalías , Adaptación Fisiológica , Glándulas Suprarrenales/patología , Glándulas Suprarrenales/fisiopatología , Animales , Apoptosis , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Cartilla de ADN/genética , Femenino , Marcación de Gen , Hipotensión/genética , Hipotensión/patología , Hipotensión/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Noqueados , Embarazo , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/fisiología , Ganglio Cervical Superior/anomalías , Ganglio Cervical Superior/patología , Ganglio Cervical Superior/fisiopatología , Sistema Nervioso Simpático/patología , Sistema Nervioso Simpático/fisiopatología
12.
Nat Genet ; 40(2): 170-80, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18176562

RESUMEN

HIF prolyl hydroxylases (PHD1-3) are oxygen sensors that regulate the stability of the hypoxia-inducible factors (HIFs) in an oxygen-dependent manner. Here, we show that loss of Phd1 lowers oxygen consumption in skeletal muscle by reprogramming glucose metabolism from oxidative to more anaerobic ATP production through activation of a Pparalpha pathway. This metabolic adaptation to oxygen conservation impairs oxidative muscle performance in healthy conditions, but it provides acute protection of myofibers against lethal ischemia. Hypoxia tolerance is not due to HIF-dependent angiogenesis, erythropoiesis or vasodilation, but rather to reduced generation of oxidative stress, which allows Phd1-deficient myofibers to preserve mitochondrial respiration. Hypoxia tolerance relies primarily on Hif-2alpha and was not observed in heterozygous Phd2-deficient or homozygous Phd3-deficient mice. Of medical importance, conditional knockdown of Phd1 also rapidly induces hypoxia tolerance. These findings delineate a new role of Phd1 in hypoxia tolerance and offer new treatment perspectives for disorders characterized by oxidative stress.


Asunto(s)
Metabolismo Basal , Glucosa/metabolismo , Hipoxia/metabolismo , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/deficiencia , Animales , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Radioisótopos de Carbono/metabolismo , Embrión de Mamíferos , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Fibroblastos/metabolismo , Glutamatos/metabolismo , Homocigoto , Inmunohistoquímica , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Músculo Esquelético/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología , Procolágeno-Prolina Dioxigenasa/genética , Tomografía Computarizada por Rayos X
13.
J Biol Chem ; 282(18): 13264-9, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17339318

RESUMEN

The von Hippel-Lindau tumor suppressor (pVHL) targets hydroxylated alpha-subunits of hypoxia-inducible factor (HIF) for ubiquitin-mediated proteasomal destruction through direct interaction with the hydroxyproline binding pocket in its beta-domain. Although disruption of this process may contribute to VHL-associated tumor predisposition by up-regulation of HIF target genes, genetic and biochemical analyses support the existence of additional functions, including a role in the assembly of extracellular matrix. In an attempt to delineate these pathways, we searched for novel pVHL-binding proteins. Here we report a direct, hydroxylation-dependent interaction with alpha-chains of collagen IV. Interaction with pVHL was also observed with fibrillar collagen chains, but not the folded collagen triple helix. The interaction was suppressed by a wide range of tumor-associated mutations, including those that do not disturb the regulation of HIF, supporting a role in HIF-independent tumor suppressor functions.


Asunto(s)
Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Hidroxiprolina/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Línea Celular , Colágeno Tipo IV/genética , Humanos , Hidroxilación , Neoplasias/genética , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
14.
Am J Physiol Endocrinol Metab ; 290(3): E591-7, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16234269

RESUMEN

Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Lepr(fa)/Lepr(fa)) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (Lepr(FA)/Lepr(FA)) and obese (Lepr(fa)/Lepr(fa)) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.


Asunto(s)
Ingestión de Alimentos/fisiología , Hipoxia/metabolismo , Obesidad/metabolismo , Receptores de Superficie Celular/deficiencia , Tejido Adiposo/metabolismo , Animales , Peso Corporal/fisiología , Expresión Génica , Hematócrito , Leptina/genética , Leptina/metabolismo , Masculino , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Ratas , Ratas Zucker , Receptores de Superficie Celular/metabolismo , Receptores de Leptina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
J Biol Chem ; 277(45): 42953-7, 2002 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-12215445

RESUMEN

Increased placental leptin has been demonstrated in preeclampsia, a pregnancy disorder associated with placental hypoxia. This suggests that leptin gene expression is enhanced in response to oxygen deficiency in this organ. In support of this hypothesis, we have previously shown that hypoxia activates the leptin promoter in trophoblast-derived BeWo cells. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric HIF-1alpha/HIF-1beta complex that regulates the transcription of hypoxia-responsive genes. To test whether this factor is involved in hypoxia-induced leptin promoter activation, BeWo cells were transiently transfected with a HIF-1alpha expression vector. Exogenous HIF-1alpha markedly increased luciferase reporter activity driven by the leptin promoter when HIF-1beta was co-expressed in the same cells. This effect was similar to that elicited by CoCl2, an agent known to stabilize endogenous HIF-1alpha. These data suggest that HIF-1alpha/HIF-1beta dimers are involved in the effect of CoCl2 to activate the leptin promoter. To confirm the implication of HIF-1, the cells were transfected with a dominant negative form of HIF-1alpha producing transcriptionally inactive HIF-1beta/HIF-1alpha dimers. This mutant HIF-1alpha protein abolished CoCl2 activation of the leptin promoter, providing direct evidence that the effect of CoCl2 is mediated by endogenous HIF-1alpha. Deletion analysis and site-specific mutagenesis demonstrated that a HIF-1 consensus binding site (HRE) spanning -120 to -116 bp relative to the start site was required for CoCl2 and exogenous HIF-1alpha induction of leptin promoter activity. Electrophoretic mobility shift assays performed with in vitro-translated HIF-1alpha and HIF-1beta proteins demonstrated binding to this HRE and not to mutated sequences only when both subunits were used together. These data demonstrate that leptin is a new hypoxia-inducible gene, which is stimulated in a placental cell line through HIF-1 interaction with a consensus HRE site located at -116 in the proximal promoter.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Leptina/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril , Activación Transcripcional , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo , Hipoxia de la Célula , Sistema Libre de Células , Coriocarcinoma , Dimerización , Femenino , Humanos , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Placenta/metabolismo , Embarazo , Biosíntesis de Proteínas , Conejos , Proteínas Recombinantes , Reticulocitos/metabolismo , Factores de Transcripción/metabolismo , Transfección , Células Tumorales Cultivadas
16.
Obes Res ; 10(8): 856; author reply 857-8, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12181397
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...