Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 80(17): 3530-3541, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32312836

RESUMEN

Reactive oxygen species (ROS) oxidize nucleotide triphosphate pools (e.g., 8-oxodGTP), which may kill cells if incorporated into DNA. Whether cancers avoid poisoning from oxidized nucleotides by preventing incorporation via the oxidized purine diphosphatase MTH1 remains under debate. Also, little is known about DNA polymerases incorporating oxidized nucleotides in cells or how oxidized nucleotides in DNA become toxic. Here we show that replacement of one of the main DNA replicases in human cells, DNA polymerase delta (Pol δ), with an error-prone variant allows increased 8-oxodG accumulation into DNA following treatment with TH588, a dual MTH1 inhibitor and microtubule targeting agent. The resulting elevated genomic 8-oxodG correlated with increased cytotoxicity of TH588. Interestingly, no substantial perturbation of replication fork progression was observed, but rather mitotic progression was impaired and mitotic DNA synthesis triggered. Reducing mitotic arrest by reversin treatment prevented accumulation of genomic 8-oxodG and reduced cytotoxicity of TH588, in line with the notion that mitotic arrest is required for ROS buildup and oxidation of the nucleotide pool. Furthermore, delayed mitosis and increased mitotic cell death was observed following TH588 treatment in cells expressing the error-prone but not wild-type Pol δ variant, which is not observed following treatments with antimitotic agents. Collectively, these results link accumulation of genomic oxidized nucleotides with disturbed mitotic progression. SIGNIFICANCE: These findings uncover a novel link between accumulation of genomic 8-oxodG and perturbed mitotic progression in cancer cells, which can be exploited therapeutically using MTH1 inhibitors.See related commentary by Alnajjar and Sweasy, p. 3459.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Monoéster Fosfórico Hidrolasas , Enzimas Reparadoras del ADN/genética , Genómica , Humanos , Mitosis/genética , Monoéster Fosfórico Hidrolasas/genética , Pirimidinas/farmacología
2.
Nat Commun ; 9(1): 3872, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250201

RESUMEN

The glycolytic PFKFB3 enzyme is widely overexpressed in cancer cells and an emerging anti-cancer target. Here, we identify PFKFB3 as a critical factor in homologous recombination (HR) repair of DNA double-strand breaks. PFKFB3 rapidly relocates into ionizing radiation (IR)-induced nuclear foci in an MRN-ATM-γH2AX-MDC1-dependent manner and co-localizes with DNA damage and HR repair proteins. PFKFB3 relocalization is critical for recruitment of HR proteins, HR activity, and cell survival upon IR. We develop KAN0438757, a small molecule inhibitor that potently targets PFKFB3. Pharmacological PFKFB3 inhibition impairs recruitment of ribonucleotide reductase M2 and deoxynucleotide incorporation upon DNA repair, and reduces dNTP levels. Importantly, KAN0438757 induces radiosensitization in transformed cells while leaving non-transformed cells unaffected. In summary, we identify a key role for PFKFB3 enzymatic activity in HR repair and present KAN0438757, a selective PFKFB3 inhibitor that could potentially be used as a strategy for the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Inhibidores Enzimáticos/farmacología , Hidroxibenzoatos/farmacología , Neoplasias/terapia , Fosfofructoquinasa-2/antagonistas & inhibidores , Sulfonas/farmacología , Antineoplásicos/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Quimioradioterapia/métodos , Roturas del ADN de Doble Cadena/efectos de la radiación , Didesoxinucleótidos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidroxibenzoatos/uso terapéutico , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , ARN Interferente Pequeño/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Radiación Ionizante , Reparación del ADN por Recombinación/efectos de los fármacos , Reparación del ADN por Recombinación/efectos de la radiación , Sulfonas/uso terapéutico
3.
Cell Cycle ; 17(5): 568-579, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28976232

RESUMEN

Incidents that slow or stall replication fork progression, collectively known as replication stress, represent a major source of spontaneous genomic instability. Here, we determine the requirement for global protein biosynthesis on DNA replication and associated downstream signaling. We study this response side by side with dNTP deprivation; one of the most commonly used means to investigate replication arrest and replicative stress. Our in vitro interrogations reveal that inhibition of translation by cycloheximide (CHX) rapidly impairs replication fork progression without decoupling helicase and polymerase activities or inducing DNA damage. In line with this, protein deprivation stress does not activate checkpoint signaling. In contrast to the direct link between insufficient dNTP pools and genome instability, our findings suggest that replication forks remain stable during short-term protein deficiency. We find that replication forks initially endure fluctuations in protein supply in order to efficiently resume DNA synthesis upon reversal of the induced protein deprivation stress. These results reveal distinct cellular responses to replication arrest induced by deprivation of either nucleotides or proteins.


Asunto(s)
Replicación del ADN , Nucleótidos/deficiencia , Biosíntesis de Proteínas , Línea Celular Tumoral , Cicloheximida/farmacología , ADN/metabolismo , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Histonas/metabolismo , Humanos , Nucleótidos/metabolismo , Transcripción Genética/efectos de los fármacos
4.
Mol Cancer Ther ; 13(10): 2412-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053826

RESUMEN

Replication inhibitors cause replication fork stalling and double-strand breaks (DSB) that result from processing of stalled forks. During recovery from replication blocks, the homologous recombination (HR) factor RAD51 mediates fork restart and DSB repair. HR defects therefore sensitize cells to replication inhibitors, with clear implications for cancer therapy. Gemcitabine is a potent replication inhibitor used to treat cancers with mutations in HR genes such as BRCA2. Here, we investigate why, paradoxically, mutations in HR genes protect cells from killing by gemcitabine. Using DNA replication and DNA damage assays in mammalian cells, we show that even short gemcitabine treatments cause persistent replication inhibition. BRCA2 and RAD51 are recruited to chromatin early after removal of the drug, actively inhibit replication fork progression, and promote the formation of MUS81- and XPF-dependent DSBs that remain unrepaired. Our data suggest that HR intermediates formed at gemcitabine-stalled forks are converted into DSBs and thus contribute to gemcitabine-induced cell death, which could have implications for the treatment response of HR-deficient tumors.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Proteína BRCA2/genética , Roturas del ADN de Doble Cadena , Desoxicitidina/análogos & derivados , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Recombinasa Rad51/genética , Proteína BRCA2/metabolismo , Muerte Celular/efectos de los fármacos , Supervivencia Celular , Replicación del ADN/efectos de los fármacos , Desoxicitidina/farmacología , Humanos , Células MCF-7 , Neoplasias/metabolismo , Recombinasa Rad51/metabolismo , Gemcitabina
5.
Nature ; 494(7438): 492-496, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23446422

RESUMEN

Cancer chromosomal instability (CIN) results in an increased rate of change of chromosome number and structure and generates intratumour heterogeneity. CIN is observed in most solid tumours and is associated with both poor prognosis and drug resistance. Understanding a mechanistic basis for CIN is therefore paramount. Here we find evidence for impaired replication fork progression and increased DNA replication stress in CIN(+) colorectal cancer (CRC) cells relative to CIN(-) CRC cells, with structural chromosome abnormalities precipitating chromosome missegregation in mitosis. We identify three new CIN-suppressor genes (PIGN (also known as MCD4), MEX3C (RKHD2) and ZNF516 (KIAA0222)) encoded on chromosome 18q that are subject to frequent copy number loss in CIN(+) CRC. Chromosome 18q loss was temporally associated with aneuploidy onset at the adenoma-carcinoma transition. CIN-suppressor gene silencing leads to DNA replication stress, structural chromosome abnormalities and chromosome missegregation. Supplementing cells with nucleosides, to alleviate replication-associated damage, reduces the frequency of chromosome segregation errors after CIN-suppressor gene silencing, and attenuates segregation errors and DNA damage in CIN(+) cells. These data implicate a central role for replication stress in the generation of structural and numerical CIN, which may inform new therapeutic approaches to limit intratumour heterogeneity.


Asunto(s)
Inestabilidad Cromosómica/genética , Neoplasias Colorrectales/genética , Replicación del ADN/genética , Aneuploidia , Línea Celular Tumoral , Inestabilidad Cromosómica/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , Cromosomas Humanos Par 18/efectos de los fármacos , Cromosomas Humanos Par 18/genética , Neoplasias Colorrectales/patología , Variaciones en el Número de Copia de ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Replicación del ADN/efectos de los fármacos , Eliminación de Gen , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Mitosis/efectos de los fármacos , Nucleósidos/farmacología , Fosfotransferasas/genética , Proteínas de Unión al ARN/genética
6.
DNA Repair (Amst) ; 11(12): 976-85, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23099010

RESUMEN

DNA interstrand crosslinks (ICLs) are highly toxic lesions that covalently link both strands of DNA and distort the DNA helix. Crosslinking agents have been shown to stall DNA replication and failure to repair ICL lesions before encountered by replication forks may induce severe DNA damage. Most knowledge of the ICL repair process has been revealed from studies in bacteria and cell extracts. However, for mammalian cells the process of ICL repair is still unclear and conflicting data exist. In this study we have explored the fate of psoralen-induced ICLs during replication, by employing intact mammalian cells and novel techniques. By comparative studies distinguishing between effects by monoadducts versus ICLs, we have been able to link the block of replication to the ICLs induction. We found that the replication fork was equally blocked by ICLs in wild-type cells as in cells deficient in ERCC1/XPF and XRCC3. The formation of ICL induced double strand breaks (DSBs), detected by formation of 53PB1 foci, was equally induced in the three cell lines suggesting that these proteins are involved at a later step of the repair process. Furthermore, we found that forks blocked by ICLs were neither bypassed, restarted nor restored for several hours. We propose that this process is different from that taking place following monoadduct induction by UV-light treatment where replication bypass is taking place as an early step. Altogether our findings suggest that restoration of an ICL blocked replication fork, likely initiated by a DSB occurs relatively rapidly at a stalled fork, is followed by restoration, which seems to be a rather slow process in intact mammalian cells.


Asunto(s)
Reactivos de Enlaces Cruzados/efectos adversos , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Ficusina/efectos adversos , Animales , Células CHO , Supervivencia Celular , Cricetinae , Proteínas de Unión al ADN/genética , Furocumarinas/efectos adversos , Concentración 50 Inhibidora , Mamíferos , Recombinación Genética , Origen de Réplica , Rayos Ultravioleta
7.
Nucleic Acids Res ; 40(14): 6585-94, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22505579

RESUMEN

Ionizing radiation (IR) produces direct two-ended DNA double-strand breaks (DSBs) primarily repaired by non-homologous end joining (NHEJ). It is, however, well established that homologous recombination (HR) is induced and required for repair of a subset of DSBs formed following IR. Here, we find that HR induced by IR is drastically reduced when post-DNA damage replication is inhibited in mammalian cells. Both IR-induced RAD51 foci and HR events in the hprt gene are reduced in the presence of replication polymerase inhibitor aphidicolin (APH). Interestingly, we also detect reduced IR-induced toxicity in HR deficient cells when inhibiting post-DNA damage replication. When studying DSB formation following IR exposure, we find that apart from the direct DSBs the treatment also triggers formation of secondary DSBs peaking at 7-9 h after exposure. These secondary DSBs are restricted to newly replicated DNA and abolished by inhibiting post-DNA damage replication. Further, we find that IR-induced RAD51 foci are decreased by APH only in cells replicating at the time of IR exposure, suggesting distinct differences between IR-induced HR in S- and G2-phases of the cell cycle. Altogether, our data indicate that secondary replication-associated DSBs formed following exposure to IR are major substrates for IR-induced HR repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , Radiación Ionizante , Reparación del ADN por Recombinación , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Humanos
8.
Nucleic Acids Res ; 39(16): 7049-57, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21646340

RESUMEN

Restarting stalled replication forks is vital to avoid fatal replication errors. Previously, it was demonstrated that hydroxyurea-stalled replication forks rescue replication either by an active restart mechanism or by new origin firing. To our surprise, using the DNA fibre assay, we only detect a slightly reduced fork speed on a UV-damaged template during the first hour after UV exposure, and no evidence for persistent replication fork arrest. Interestingly, no evidence for persistent UV-induced fork stalling was observed even in translesion synthesis defective, Polη(mut) cells. In contrast, using an assay to measure DNA molecule elongation at the fork, we observe that continuous DNA elongation is severely blocked by UV irradiation, particularly in UV-damaged Polη(mut) cells. In conclusion, our data suggest that UV-blocked replication forks restart effectively through re-priming past the lesion, leaving only a small gap opposite the lesion. This allows continuation of replication on damaged DNA. If left unfilled, the gaps may collapse into DNA double-strand breaks that are repaired by a recombination pathway, similar to the fate of replication forks collapsed after hydroxyurea treatment.


Asunto(s)
Daño del ADN , Replicación del ADN , Rayos Ultravioleta , Línea Celular , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/análisis , Fibroblastos/metabolismo , Humanos , Moldes Genéticos
9.
J Mol Biol ; 402(1): 70-82, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20643142

RESUMEN

Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O(6)-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-N'-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced gammaH2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks.


Asunto(s)
Roturas del ADN de Cadena Simple/efectos de los fármacos , Daño del ADN , Replicación del ADN/efectos de los fármacos , Guanosina/análogos & derivados , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Alquilación , Animales , Western Blotting , Células Cultivadas , Cricetinae , Cricetulus , Metilación de ADN , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Guanosina/farmacología , Metilmetanosulfonato/farmacología
10.
J Cell Biol ; 188(5): 629-38, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20194642

RESUMEN

Maintenance of genome integrity is of critical importance to cells. To identify key regulators of genomic integrity, we screened a human cell line with a kinome small interfering RNA library. WEE1, a major regulator of mitotic entry, and CHK1 were among the genes identified. Both kinases are important negative regulators of CDK1 and -2. Strikingly, WEE1 depletion rapidly induced DNA damage in S phase in newly replicated DNA, which was accompanied by a marked increase in single-stranded DNA. This DNA damage is dependent on CDK1 and -2 as well as the replication proteins MCM2 and CDT1 but not CDC25A. Conversely, DNA damage after CHK1 inhibition is highly dependent on CDC25A. Furthermore, the inferior proliferation of CHK1-depleted cells is improved substantially by codepletion of CDC25A. We conclude that the mitotic kinase WEE1 and CHK1 jointly maintain balanced cellular control of Cdk activity during normal DNA replication, which is crucial to prevent the generation of harmful DNA lesions during replication.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Inestabilidad Genómica , Fase S/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasas Ciclina-Dependientes/genética , Daño del ADN , Replicación del ADN , Citometría de Flujo , Genoma Humano , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...