RESUMEN
The primary regulator of dopamine availability in the brain is the dopamine transporter (DAT), a plasma membrane protein that drives reuptake of released dopamine from the extracellular space into the presynaptic neuron. DAT activity is regulated by post-translational modifications that establish clearance capacity through impacts on transport kinetics, and dysregulation of these events may underlie dopaminergic imbalances in mood and psychiatric disorders. Here, using fluorescence recovery after photobleaching, we show that phosphorylation and palmitoylation induce opposing effects on DAT lateral membrane mobility, which may influence functional outcomes by regulating subcellular localization and binding partner interactions. Membrane mobility was also impacted by amphetamine and in polymorphic variant A559V in directions consistent with enhanced phosphorylation. These findings grow the list of DAT properties controlled by these post-translational modifications and highlight their role in establishment of dopaminergic tone in physiological and pathophysiological states.
RESUMEN
Although cyclooxygenase (COX) role in cancer angiogenesis has been studied, little is known about its role in brain angioplasticity. In the present study, we chronically infused mice with ketorolac, a non-specific COX inhibitor that does not cross the blood-brain barrier (BBB), under normoxia or 50% isobaric hypoxia (10% O2 by volume). Ketorolac increased mortality rate under hypoxia in a dose-dependent manner. Using in vivo multiphoton microscopy, we demonstrated that chronic COX inhibition completely attenuated brain angiogenic response to hypoxia. Alterations in a number of angiogenic factors that were reported to be COX-dependent in other models were assayed at 24-hr and 10-day hypoxia. Intriguingly, hypoxia-inducible factor 1 was unaffected under COX inhibition, and vascular endothelial growth factor receptor type 2 (VEGFR2) and C-X-C chemokine receptor type 4 (CXCR4) were significantly but slightly decreased. However, a number of mitogen-activated protein kinases (MAPKs) were significantly reduced upon COX inhibition. We conclude that additional, angiogenic factor-independent mechanism might contribute to COX role in brain angioplasticity, probably including mitogenic COX effect on endothelium. Our data indicate that COX activity is critical for systemic adaptation to chronic hypoxia, and BBB COX is essential for hypoxia-induced brain angioplasticity. These data also indicate a potential risk for using COX inhibitors under hypoxia conditions in clinics. Further studies are required to elucidate a complete mechanism for brain long-term angiogenesis regulation through COX activity.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Hipoxia/tratamiento farmacológico , Hipoxia/mortalidad , Ketorolaco/farmacología , Animales , Enfermedad Crónica , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitógenos/farmacología , Prostaglandinas/metabolismo , Análisis de Supervivencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
We previously demonstrated that OVE transgenic diabetic mice are susceptible to chronic complications of diabetic nephropathy (DN) including substantial oxidative damage to the renal glomerular filtration barrier (GFB). Importantly, the damage was mitigated significantly by overexpression of the powerful antioxidant, metallothionein (MT) in podocytes. To test our hypothesis that GFB damage in OVE mice is the result of endothelial oxidative insult, a new JTMT transgenic mouse was designed in which MT overexpression was targeted specifically to endothelial cells. At 60 days of age, JTMT mice were crossed with age-matched OVE diabetic mice to produce bi-transgenic OVE-JTMT diabetic progeny that carried the endothelial targeted JTMT transgene. Renal tissues from the OVE-JTMT progeny were examined by unbiased TEM stereometry for possible GFB damage and other alterations from chronic complications of DN. In 150 day-old OVE-JTMT mice, blood glucose and HbA1c were indistinguishable from age-matched OVE mice. However, endothelial-specific MT overexpression in OVE-JTMT mice mitigated several DN complications including significantly increased non-fenestrated glomerular endothelial area, and elimination of glomerular basement membrane thickening. Significant renoprotection was also observed outside of endothelial cells, including reduced podocyte effacement, and increased podocyte and total glomerular cell densities. Moreover, when compared to OVE diabetic animals, OVE-JTMT mice showed significant mitigation of nephromegaly, glomerular hypertrophy, increased mesangial cell numbers and increased total glomerular cell numbers. These results confirm the importance of oxidative stress to glomerular damage in DN, and show the central role of endothelial cell injury to the pathogenesis of chronic complications of diabetes. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:560-576, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Nefropatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Glomérulos Renales/metabolismo , Metalotioneína/metabolismo , Podocitos/metabolismo , Animales , Glucemia/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Glomérulos Renales/patología , Metalotioneína/genética , Ratones , Ratones Transgénicos , Estrés Oxidativo , Podocitos/patologíaRESUMEN
The sodium hydrogen exchanger isoform one (NHE1) plays a critical role coordinating asymmetric events at the leading edge of migrating cells and is regulated by a number of phosphorylation events influencing both the ion transport and cytoskeletal anchoring required for directed migration. Lysophosphatidic acid (LPA) activation of RhoA kinase (Rock) and the Ras-ERK growth factor pathway induces cytoskeletal reorganization, activates NHE1 and induces an increase in cell motility. We report that both Rock I and II stoichiometrically phosphorylate NHE1 at threonine 653 in vitro using mass spectrometry and reconstituted kinase assays. In fibroblasts expressing NHE1 alanine mutants for either Rock (T653A) or ribosomal S6 kinase (Rsk; S703A) we show that each site is partially responsible for the LPA-induced increase in transport activity while NHE1 phosphorylation by either Rock or Rsk at their respective site is sufficient for LPA stimulated stress fiber formation and migration. Furthermore, mutation of either T653 or S703 leads to a higher basal pH level and a significantly higher proliferation rate. Our results identify the direct phosphorylation of NHE1 by Rock and suggest that both RhoA and Ras pathways mediate NHE1-dependent ion transport and migration in fibroblasts.
Asunto(s)
Citoesqueleto/efectos de los fármacos , Lisofosfolípidos/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Cricetinae , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Fosfopéptidos/análisis , Fosforilación/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Alineación de Secuencia , Intercambiadores de Sodio-Hidrógeno/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteína de Unión al GTP rhoA/genéticaRESUMEN
Hypoxia has been widely implicated in many pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of vasculogenesis and permeability, the basis for which is not fully understood. Here we examine the transcriptional regulation of angiogenesis and permeability by hypoxia in endothelial cells. Guided by a global profiling approach in cultured endothelial cells, these studies revealed the selective induction of human gravin (protein kinase A anchoring protein 12) by hypoxia. Analysis of the cloned gravin promoter identified a functional hypoxia-responsive region including 2 binding sites for hypoxia-inducible factor (HIF). Site-directed mutagenesis identified the most distal HIF-binding site as essential for the induction of gravin by hypoxia. Further studies examining gravin gain and loss of function confirmed strong dependence of gravin in control of microvascular endothelial tube formation, wherein gravin functions as a "braking" system for angiogenesis. Additional studies in confluent endothelia revealed that gravin functionally couples to control endothelial barrier function in response to protein kinase A (PKA) agonists. Taken together, these results demonstrate transcriptional coordination of gravin by HIF-1α and amplified PKA-dependent endothelial responses. These findings provide an important link between hypoxia and metabolic conditions associated with inflammation and angiogenesis.
Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Ciclo Celular/genética , Hipoxia de la Célula/genética , Hipoxia de la Célula/fisiología , Línea Celular , Humanos , Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mutagénesis Sitio-DirigidaRESUMEN
Heat shock proteins represent an emerging model for the coordinated, multistep regulation of apoptotic signaling events. Although certain aspects of the biochemistry associated with heat shock protein cytoprotective effects are known, little information is found describing the regulation of heat shock protein responses to harmful stimuli. During screening for noncanonical beta adrenergic receptor signaling pathways in human urothelial cells, using mass spectroscopy techniques, an agonist-dependent interaction with beta-arrestin and the 27-kDa heat shock protein was observed in vitro. Formation of this beta-arrestin/Hsp27 complex in response to the selective beta adrenergic receptor agonist isoproterenol, was subsequently confirmed in situ by immunofluorescent colocalization studies. Radioligand binding techniques characterized a homogeneous population of the beta2 adrenergic receptor subtype expressed on these cells. Using terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunoblot analysis and quantitation of caspase-3 activity to detect apoptosis, preincubation of these cells with isoproterenol was found to be sufficient for protection against programmed cell death initiated by staurosporine. RNA interference strategies confirmed the necessity for Hsp27 as well as both beta-arrestin isoforms to confer this cytoprotective consequence of beta adrenergic receptor activation in this cell model. As a result, these studies represent the first description of an agonist-dependent relationship between a small heat shock protein and beta-arrestin to form a previously unknown antiapoptotic "signalosome."
Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/metabolismo , Arrestinas/fisiología , Citoprotección/fisiología , Proteínas de Choque Térmico HSP27/fisiología , Receptores Adrenérgicos beta 2/fisiología , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/agonistas , Proteínas Reguladoras de la Apoptosis/fisiología , Arrestinas/genética , Línea Celular Transformada , Citoprotección/efectos de los fármacos , Proteínas de Choque Térmico HSP27/genética , Humanos , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/fisiología , Interferencia de ARN , Urotelio/citología , Urotelio/efectos de los fármacos , Urotelio/metabolismo , beta-ArrestinasRESUMEN
SSeCKS (src suppressed C kinase substrate) is a protein kinase C substrate that may play a role in tumor suppression. Recently described in fibroblasts, testes and mesangial cells, SSeCKS may have a function in the control of cell signaling and cytoskeletal arrangement. To investigate the distribution of SSeCKS throughout the nervous system, representative sections of brain, spinal cord and dorsal root ganglia were processed using immunofluorescence. Labeling of central axonal collaterals of primary sensory neurons was observed in the dorsal horn at all spinal levels. SSeCKS-immunoreactivity was also observed in the cerebellum, medulla and sensory ganglia (including trigeminal ganglia). The pattern and distribution of anti-SSeCKS labeling in dorsal root ganglia and the dorsal horn of the spinal cord was similar to that observed for other markers of small primary sensory neurons. Therefore, the coexistence of SSeCKS with substance P, CGRP and acid phosphatase was examined in sections of sensory ganglia, spinal cord and medulla using double immunofluorescent labeling for SSeCKS and substance P/CGRP or sequential SSeCKS immunofluorescence and acid phosphatase/fluoride-resistant acid phosphatase enzyme histochemistry. A small portion of the SSeCKS-labeled cell bodies appeared to represent a subpopulation of substance P (4.8%) and CGRP (4.7%) containing neurons, while 45.0% contained fluoride-resistant acid phosphatase reactivity. These results indicate that SSeCKS has a restricted distribution within the nervous system and that expression of this protein may reflect the specific signaling requirements of a distinct population of nociceptive sensory neurons.
Asunto(s)
Proteínas de Ciclo Celular , Mitógenos/análisis , Neuronas Aferentes/química , Proteínas de Anclaje a la Quinasa A , Fosfatasa Ácida/análisis , Animales , Anticuerpos , Péptido Relacionado con Gen de Calcitonina/análisis , Péptido Relacionado con Gen de Calcitonina/inmunología , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Masculino , Mitógenos/inmunología , Nociceptores/fisiología , Células PC12 , Ratas , Ratas Sprague-Dawley , Médula Espinal/citología , Sustancia P/análisis , Sustancia P/inmunologíaRESUMEN
Embryos of the viviparous poeciliid fish, Heterandria formosa, develop to term in the ovarian follicle where they undergo a 3,900% increase in embryonic dry weight. Maternal-embryonic nutrient transfer occurs across a follicular placenta that is formed by close apposition of the embryonic surface (i.e., the entire body surface during early gestation and the pericardial amnionserosa during mid-late gestation) to the follicular epithelium. To complement our recent study of the embryonic component of the follicular placenta, we now describe the development and fine structure of the maternal component of the follicular placenta. Transmission electron microscopy reveals that the ultrastructure of the egg envelope and the follicular epithelium that invests vitellogenic oocytes is typical of that described for teleosts. The egg envelope is a dense matrix, penetrated by microvilli of the oocyte. The follicular epithelium consists of a single layer of cuboidal cells that lack apical microvilli, basal surface specializations, and junctional complexes. Follicle cells investing the youngest embryonic stage examined (Tavolga's and Rugh's stage 5-7 for Xiphophorus maculatus) also lack apical microvilli and basal specializations, but possess junctional complexes. In contrast, follicle cells that invest embryos at stage 10 and later display ultrastructural features characteristic of transporting epithelial cells. Apical microvilli and surface invaginations are present. The basal surface is extensively folded. Apical and basal coated pits are present. The cytoplasm contains a rough endoplasmic reticulum, Golgi complexes, and dense staining vesicles that appear to be lysosomes. The presence of numerous apically located electron-lucent vesicles that appear to be derived from the apical surface further suggests that these follicle cells may absorb and process follicular fluid. The egg envelope, which remains intact throughout gestation and lacks perforations, becomes progressively thinner and less dense as gestation proceeds. We postulate that these ultrastructural features, which are not present in the follicles of the lecithotrophic poeciliid, Poecilia reticulata, are specializations for maternal-embryonic nutrient transfer and that the egg envelope, follicular epithelium, and underlying capillary network form the maternal component of the follicular placenta. © 1994 Wiley-Liss, Inc.
RESUMEN
Embryos of the poeciliid Heterandria formosa develop to term in the ovarian follicle in which they establish a placental association with the follicle wall (follicular placenta) and undergo a 3,900% increase in embryonic dry weight. This study does not confirm the belief that the embryonic component of the follicular placenta is formed only by the surfaces of the pericardial and yolk sacs; early in development the entire embryonic surface functions in absorption. The pericardial sac expands to form a hood-like structure that covers the head of the embryo and together with the yolk sac is extensively vascularized by a portal plexus derived from the vitelline circulation. The hood-like pericardial sac is considered to be a pericardial amnion-serosa. Scanning and transmission electron microscopy reveal that during the early and middle phases of development (Tavolga's stages 10-18 for Xiphophorus maculatus) the entire embryo is covered by a bilaminar epithelium whose apical surface is characterized by numerous, elongate microvilli and coated pits and vesicles. Electron-lucent vesicles in the apical cytoplasm appear to be endosomes while a heterogeneous group of dense-staining vesicles display many features characteristic of lysosomes. As in the larvae of other teleosts, cells resembling chloride cells are also present in the surface epithelium. Endothelial cells of the portal plexus lie directly beneath the surface epithelium of the pericardial and yolk sacs and possess numerous transcytotic vesicles. The microvillous surface epithelium becomes restricted to the pericardial and yolk sacs late in development when elsewhere on the embryo the non-absorptive epidermis differentiates. We postulate that before the definitive epidermis differentiates, the entire embryonic surface constitutes the embryonic component of the follicular placenta. The absorptive surface epithelium appears to be the principle embryonic adaptation for maternal-embryonic nutrient uptake in H. formosa, suggesting that a change in the normal differentiation of the surface epithelium was of primary importance to the acquisition of matrotrophy in this species. In other species of viviparous poeciliid fishes in which there is little or no transfer of maternal nutrients, the embryonic surface epithelium is of the non-absorptive type.