Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 95(7): 629-638, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207935

RESUMEN

BACKGROUND: The psychopathological syndrome of formal thought disorder (FTD) is not only present in schizophrenia (SZ), but also highly prevalent in major depressive disorder and bipolar disorder. It remains unknown how alterations in the structural white matter connectome of the brain correlate with psychopathological FTD dimensions across affective and psychotic disorders. METHODS: Using FTD items of the Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms, we performed exploratory and confirmatory factor analyses in 864 patients with major depressive disorder (n= 689), bipolar disorder (n = 108), or SZ (n = 67) to identify psychopathological FTD dimensions. We used T1- and diffusion-weighted magnetic resonance imaging to reconstruct the structural connectome of the brain. To investigate the association of FTD subdimensions and global structural connectome measures, we employed linear regression models. We used network-based statistic to identify subnetworks of white matter fiber tracts associated with FTD symptomatology. RESULTS: Three psychopathological FTD dimensions were delineated, i.e., disorganization, emptiness, and incoherence. Disorganization and incoherence were associated with global dysconnectivity. Network-based statistics identified subnetworks associated with the FTD dimensions disorganization and emptiness but not with the FTD dimension incoherence. Post hoc analyses on subnetworks did not reveal diagnosis × FTD dimension interaction effects. Results remained stable after correcting for medication and disease severity. Confirmatory analyses showed a substantial overlap of nodes from both subnetworks with cortical brain regions previously associated with FTD in SZ. CONCLUSIONS: We demonstrated white matter subnetwork dysconnectivity in major depressive disorder, bipolar disorder, and SZ associated with FTD dimensions that predominantly comprise brain regions implicated in speech. Results open an avenue for transdiagnostic, psychopathology-informed, dimensional studies in pathogenetic research.


Asunto(s)
Trastorno Depresivo Mayor , Demencia Frontotemporal , Trastornos Psicóticos , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/complicaciones , Demencia Frontotemporal/complicaciones , Trastornos Psicóticos/psicología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Esquizofrenia/patología , Imagen por Resonancia Magnética
2.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36874281

RESUMEN

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

3.
Psychol Med ; : 1-12, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752136

RESUMEN

BACKGROUND: Cognitive dysfunction and brain structural connectivity alterations have been observed in major depressive disorder (MDD). However, little is known about their interrelation. The present study follows a network approach to evaluate alterations in cognition-related brain structural networks. METHODS: Cognitive performance of n = 805 healthy and n = 679 acutely depressed or remitted individuals was assessed using 14 cognitive tests aggregated into cognitive factors. The structural connectome was reconstructed from structural and diffusion-weighted magnetic resonance imaging. Associations between global connectivity strength and cognitive factors were established using linear regressions. Network-based statistics were applied to identify subnetworks of connections underlying these global-level associations. In exploratory analyses, effects of depression were assessed by evaluating remission status-related group differences in subnetwork-specific connectivity. Partial correlations were employed to directly test the complete triad of cognitive factors, depressive symptom severity, and subnetwork-specific connectivity strength. RESULTS: All cognitive factors were associated with global connectivity strength. For each cognitive factor, network-based statistics identified a subnetwork of connections, revealing, for example, a subnetwork positively associated with processing speed. Within that subnetwork, acutely depressed patients showed significantly reduced connectivity strength compared to healthy controls. Moreover, connectivity strength in that subnetwork was associated to current depressive symptom severity independent of the previous disease course. CONCLUSIONS: Our study is the first to identify cognition-related structural brain networks in MDD patients, thereby revealing associations between cognitive deficits, depressive symptoms, and reduced structural connectivity. This supports the hypothesis that structural connectome alterations may mediate the association of cognitive deficits and depression severity.

4.
Biol Psychiatry ; 93(2): 178-186, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36114041

RESUMEN

BACKGROUND: Altered brain structural connectivity has been implicated in the pathophysiology of psychiatric disorders including schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). However, it is unknown which part of these connectivity abnormalities are disorder specific and which are shared across the spectrum of psychotic and affective disorders. We investigated common and distinct brain connectivity alterations in a large sample (N = 1743) of patients with SZ, BD, or MDD and healthy control (HC) subjects. METHODS: This study examined diffusion-weighted imaging-based structural connectome topology in 720 patients with MDD, 112 patients with BD, 69 patients with SZ, and 842 HC subjects (mean age of all subjects: 35.7 years). Graph theory-based network analysis was used to investigate connectome organization. Machine learning algorithms were trained to classify groups based on their structural connectivity matrices. RESULTS: Groups differed significantly in the network metrics global efficiency, clustering, present edges, and global connectivity strength with a converging pattern of alterations between diagnoses (e.g., efficiency: HC > MDD > BD > SZ, false discovery rate-corrected p = .028). Subnetwork analysis revealed a common core of edges that were affected across all 3 disorders, but also revealed differences between disorders. Machine learning algorithms could not discriminate between disorders but could discriminate each diagnosis from HC. Furthermore, dysconnectivity patterns were found most pronounced in patients with an early disease onset irrespective of diagnosis. CONCLUSIONS: We found shared and specific signatures of structural white matter dysconnectivity in SZ, BD, and MDD, leading to commonly reduced network efficiency. These results showed a compromised brain communication across a spectrum of major psychiatric disorders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastornos Psicóticos , Humanos , Adulto , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Trastornos Psicóticos/diagnóstico por imagen
5.
Hum Brain Mapp ; 41(15): 4397-4405, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32648625

RESUMEN

Reduced sleep duration and sleep deprivation have been associated with cognitive impairment as well as decreased white matter integrity as reported by experimental studies. However, it is largely unknown whether differences in sleep duration and sleep quality might affect microstructural white matter and cognition. Therefore, the present study aims to examine the cross-sectional relationship between sleep duration, sleep quality, and cognitive performance in a naturalistic study design, by focusing on the association with white matter integrity in a large sample of healthy, young adults. To address this, 1,065 participants, taken from the publicly available sample of the Human Connectome Project, underwent diffusion tensor imaging. Moreover, broad cognitive performance measures (NIH Cognition Toolbox) and sleep duration and quality (Pittsburgh Sleep Quality Index) were assessed. The results revealed a significant positive association between sleep duration and overall cognitive performance. Shorter sleep duration significantly correlated with fractional anisotropy (FA) reductions in the left superior longitudinal fasciculus (SLF). In turn, FA in this tract was related to measures of cognitive performance and was shown to significantly mediate the association of sleep duration and cognition. For cognition only, associations shift to a negative association of sleep duration and cognition for participants sleeping more than 8 hr a day. Investigations into subjective sleep quality showed no such associations. The present study showed that real-world differences in sleep duration, but not subjective sleep quality are related to cognitive performance measures and white matter integrity in the SLF in healthy, young adults.


Asunto(s)
Cognición/fisiología , Imagen de Difusión Tensora , Sueño/fisiología , Sustancia Blanca/anatomía & histología , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA