Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6563, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323673

RESUMEN

DNA:DNA:RNA triplexes that are formed through Hoogsteen base-pairing of the RNA in the major groove of the DNA duplex have been observed in vitro, but the extent to which these interactions occur in cells and how they impact cellular functions remains elusive. Using a combination of bioinformatic techniques, RNA/DNA pulldown and biophysical studies, we set out to identify functionally important DNA:DNA:RNA triplex-forming long non-coding RNAs (lncRNA) in human endothelial cells. The lncRNA HIF1α-AS1 was retrieved as a top hit. Endogenous HIF1α-AS1 reduces the expression of numerous genes, including EPH Receptor A2 and Adrenomedullin through DNA:DNA:RNA triplex formation by acting as an adapter for the repressive human silencing hub complex (HUSH). Moreover, the oxygen-sensitive HIF1α-AS1 is down-regulated in pulmonary hypertension and loss-of-function approaches not only result in gene de-repression but also enhance angiogenic capacity. As exemplified here with HIF1α-AS1, DNA:DNA:RNA triplex formation is a functionally important mechanism of trans-acting gene expression control.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Endoteliales/metabolismo , ADN/genética , ADN/metabolismo , Emparejamiento Base , Oligonucleótidos , Regulación Neoplásica de la Expresión Génica
2.
Methods Mol Biol ; 2161: 229-246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32681516

RESUMEN

RNA can bind within the major groove of purine-rich DNA via Hoogsteen base pairing and form a triple helical RNA-DNA structure that anchors the RNA to specific DNA sequences, thereby targeting RNA-associated regulatory proteins to distinct genomic sites. Here we present methods to analyze the potential of a given RNA to form triplexes in vitro and to validate these structures in vivo.


Asunto(s)
ADN/química , Ensayo de Cambio de Movilidad Electroforética/métodos , ARN/química , Células HeLa , Humanos , Conformación de Ácido Nucleico
3.
Front Immunol ; 11: 657, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477324

RESUMEN

Catabolism of the essential amino acid tryptophan is a key metabolic pathway contributing to the immunosuppressive tumor microenvironment and therefore a viable drug target for cancer immunotherapy. In addition to the rate-limiting enzyme indoleamine-2,3-dioxygenase-1 (IDO1), tryptophan catabolism via tryptophan-2,3-dioxygenase (TDO2) is a feature of many tumors, particularly malignant gliomas. The pathways regulating TDO2 in tumors are poorly understood; using unbiased promoter and gene expression analyses, we identify a distinct CCAAT/enhancer-binding protein ß (C/EBPß) binding site in the promoter of TDO2 essential for driving constitutive TDO2 expression in glioblastoma cells. Using The Cancer Genome Atlas (TCGA) data, we find that C/EBPß expression is correlated with TDO2, and both are enriched in malignant glioma of the mesenchymal subtype and associated with poor patient outcome. We determine that TDO2 expression is sustained mainly by the LAP isoform of CEBPB and interleukin-1ß, which activates TDO2 via C/EBPß in a mitogen-activated protein kinase (MAPK) kinase-dependent fashion. In summary, we provide evidence for a novel regulatory and therapeutically targetable pathway of immunosuppressive tryptophan degradation in a subtype of glioblastoma with a particularly poor prognosis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Glioblastoma/metabolismo , Regiones Promotoras Genéticas/genética , Triptófano Oxigenasa/metabolismo , Biomarcadores de Tumor/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Carcinogénesis , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Tolerancia Inmunológica , Interleucina-1beta/metabolismo , Terapia Molecular Dirigida , Transducción de Señal , Triptófano Oxigenasa/genética
4.
Epigenet Insights ; 12: 2516865719849090, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31206100

RESUMEN

Entry into mitosis correlates with nucleolar disassembly and shutdown of ribosomal RNA (rRNA) gene (rDNA) transcription. In telophase, nucleoli reform and transcription is reactivated. The molecular mechanisms underlying the dynamics of nucleolar transcription during the cell cycle are manifold. Although mitotic inactivation of the RNA polymerase I (Pol I) transcription machinery by posttranslational modifications has been extensively studied, little is known about the structure of rDNA chromatin during progression through mitosis. Methylation of histone H2A at glutamine 104 (H2AQ104me), a dedicated nucleolar histone modification, is lost in prometaphase, leading to chromatin compaction, which enforces mitotic repression of rRNA genes. At telophase, restoration of H2AQ104me is required for the activation of transcription. H2AQ104 methylation and chromatin dynamics are regulated by fibrillarin (FBL) and the NAD+-dependent nucleolar deacetylase sirtuin 7 (SIRT7). Deacetylation of FBL is required for the methylation of H2AQ104 and high levels of rDNA transcription during interphase. At the entry into mitosis, nucleoli disassemble and FBL is hyperacetylated, leading to loss of H2AQ104me, chromatin compaction, and shutdown of Pol I transcription. These results reveal that reversible acetylation of FBL regulates methylation of nucleolar H2AQ104, thereby reinforcing oscillation of Pol I transcription during the cell cycle.

5.
Methods Mol Biol ; 1983: 237-253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31087302

RESUMEN

R-loops are three-stranded nucleic acid structures composed of a DNA-RNA heteroduplex and a displaced single-stranded DNA. Although R-loops serve important roles in transcription and chromatin structure, they are also a major threat to genome stability. Cells prevent accumulation of genomic R-loops by mechanisms that remove these structures, such as ribonucleases which digest DNA-RNA hybrids and helicases which unwind R-loops. Here we describe methods to monitor resolvement of R-loops by the helicase DDX21 focussing on the impact of acetylation on helicase activity.


Asunto(s)
ADN Helicasas/metabolismo , Estructuras R-Loop , Acetilación , Línea Celular , ADN/química , ADN/genética , ADN/metabolismo , Inestabilidad Genómica , Humanos , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN/metabolismo , Especificidad por Sustrato
6.
Cell Rep ; 26(11): 2904-2915.e4, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865882

RESUMEN

Transcription of the proto-oncogene SPHK1 is regulated by KHPS1, an antisense RNA that activates SPHK1 expression by forming a triple-helical RNA-DNA-DNA structure at the SPHK1 enhancer. Triplex-mediated tethering of KHPS1 to its target gene is required for recruitment of E2F1 and p300 and transcription of the RNA derived from the SPHK1 enhancer (eRNA-Sphk1). eRNA-Sphk1 evicts CTCF, which insulates the enhancer from the SPHK1 promoter, thus facilitating SPHK1 expression. Genomic deletion of the triplex-forming sequence attenuates SPHK1 expression, leading to decreased cell migration and invasion. Replacement of the triplex-forming region (TFR) of KHPS1 by the TFR of the lncRNA MEG3 tethers KHPS1 to the MEG3 target gene TGFBR1, underscoring the interchangeability and anchoring function of sequences involved in triplex formation. Altogether, the results reveal a triplex-driven feedforward mechanism involving lncRNA-dependent induction of eRNA, which enhances expression of specific target genes.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , ARN Largo no Codificante/metabolismo , Células 3T3 , Animales , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proto-Oncogenes Mas , ARN Largo no Codificante/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
7.
Nucleic Acids Res ; 47(6): e32, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698727

RESUMEN

Long non-coding RNAs (lncRNAs) can act as scaffolds that promote the interaction of proteins, RNA, and DNA. There is increasing evidence of sequence-specific interactions of lncRNAs with DNA via triple-helix (triplex) formation. This process allows lncRNAs to recruit protein complexes to specific genomic regions and regulate gene expression. Here we propose a computational method called Triplex Domain Finder (TDF) to detect triplexes and characterize DNA-binding domains and DNA targets statistically. Case studies showed that this approach can detect the known domains of lncRNAs Fendrr, HOTAIR and MEG3. Moreover, we validated a novel DNA-binding domain in MEG3 by a genome-wide sequencing method. We used TDF to perform a systematic analysis of the triplex-forming potential of lncRNAs relevant to human cardiac differentiation. We demonstrated that the lncRNA with the highest triplex-forming potential, GATA6-AS, forms triple helices in the promoter of genes relevant to cardiac development. Moreover, down-regulation of GATA6-AS impairs GATA6 expression and cardiac development. These data indicate the unique ability of our computational tool to identify novel triplex-forming lncRNAs and their target genes.


Asunto(s)
Biología Computacional/métodos , ADN/metabolismo , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Algoritmos , Secuencia de Bases , Sitios de Unión/genética , ADN/química , Expresión Génica , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Factores de Transcripción/metabolismo
8.
Nat Genet ; 51(2): 217-223, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30617255

RESUMEN

R-loops are DNA-RNA hybrids enriched at CpG islands (CGIs) that can regulate chromatin states1-8. How R-loops are recognized and interpreted by specific epigenetic readers is unknown. Here we show that GADD45A (growth arrest and DNA damage protein 45A) binds directly to R-loops and mediates local DNA demethylation by recruiting TET1 (ten-eleven translocation 1). Studying the tumor suppressor TCF21 (ref. 9), we find that antisense long noncoding (lncRNA) TARID (TCF21 antisense RNA inducing promoter demethylation) forms an R-loop at the TCF21 promoter. Binding of GADD45A to the R-loop triggers local DNA demethylation and TCF21 expression. TARID transcription, R-loop formation, DNA demethylation, and TCF21 expression proceed sequentially during the cell cycle. Oxidized DNA demethylation intermediates are enriched at genomic R-loops and their levels increase upon RNase H1 depletion. Genomic profiling in embryonic stem cells identifies thousands of R-loop-dependent TET1 binding sites at CGIs. We propose that GADD45A is an epigenetic R-loop reader that recruits the demethylation machinery to promoter CGIs.


Asunto(s)
Proteínas de Ciclo Celular/genética , Islas de CpG/genética , Oxigenasas de Función Mixta/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Animales , Ciclo Celular/genética , Línea Celular , Cromatina/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Células HEK293 , Humanos , Ratones , Unión Proteica/genética , ARN Largo no Codificante/genética , Ribonucleasa H/genética , Transcripción Genética/genética
9.
Nucleic Acids Res ; 47(5): 2306-2321, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30605520

RESUMEN

RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including super-enhancers and repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.


Asunto(s)
ADN/química , ADN/aislamiento & purificación , Conformación de Ácido Nucleico , ARN/química , ARN/aislamiento & purificación , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , ADN/genética , Elementos de Facilitación Genéticos/genética , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Purinas/química , Purinas/metabolismo , ARN/genética , ARN Largo no Codificante/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
10.
Cell Rep ; 25(11): 2946-2954.e5, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540930

RESUMEN

Fibrillarin (FBL) is a dual-function nucleolar protein that catalyzes 2'-O methylation of pre-rRNA and methylation of histone H2A at glutamine 104 (H2AQ104me). The mechanisms that regulate FBL activity are unexplored. Here, we show that FBL is acetylated at several lysine residues by the acetyltransferase CBP and deacetylated by SIRT7. While reversible acetylation does not impact FBL-mediated pre-rRNA methylation, hyperacetylation impairs the interaction of FBL with histone H2A and chromatin, thereby compromising H2AQ104 methylation (H2AQ104me) and rDNA transcription. SIRT7-dependent deacetylation of FBL ensures H2AQ104me and high levels of rRNA synthesis during interphase. At the onset of mitosis, nucleolar disassembly is accompanied by hyperacetylation of FBL, loss of H2AQ104me, and repression of polymerase I (Pol I) transcription. Overexpression of an acetylation-deficient, but not an acetylation-mimicking, FBL mutant restores H2AQ104me and transcriptional activity. The results reveal that SIRT7-dependent deacetylation impacts nucleolar activity by an FBL-driven circuitry that mediates cell-cycle-dependent fluctuation of rDNA transcription.


Asunto(s)
Ciclo Celular , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , ARN Ribosómico/biosíntesis , Sirtuinas/metabolismo , Acetilación , Línea Celular , ADN Ribosómico/genética , Glutamina/metabolismo , Humanos , Metilación , Mitosis/genética , Unión Proteica , Precursores del ARN/biosíntesis , Procesamiento Postranscripcional del ARN , Transcripción Genética
11.
Genes Dev ; 32(11-12): 836-848, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29907651

RESUMEN

Attenuation of pre-rRNA synthesis in response to elevated temperature is accompanied by increased levels of PAPAS ("promoter and pre-rRNA antisense"), a long noncoding RNA (lncRNA) that is transcribed in an orientation antisense to pre-rRNA. Here we show that PAPAS interacts directly with DNA, forming a DNA-RNA triplex structure that tethers PAPAS to a stretch of purines within the enhancer region, thereby guiding associated CHD4/NuRD (nucleosome remodeling and deacetylation) to the rDNA promoter. Protein-RNA interaction experiments combined with RNA secondary structure mapping revealed that the N-terminal part of CHD4 interacts with an unstructured A-rich region in PAPAS. Deletion or mutation of this sequence abolishes the interaction with CHD4. Stress-dependent up-regulation of PAPAS is accompanied by dephosphorylation of CHD4 at three serine residues, which enhances the interaction of CHD4/NuRD with RNA and reinforces repression of rDNA transcription. The results emphasize the function of lncRNAs in guiding chromatin remodeling complexes to specific genomic loci and uncover a phosphorylation-dependent mechanism of CHD4/NuRD-mediated transcriptional regulation.


Asunto(s)
ADN Ribosómico/genética , Regulación de la Expresión Génica/genética , Calor , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/metabolismo , ARN Ribosómico/genética , Estrés Fisiológico/genética , Animales , Elementos de Facilitación Genéticos , Células HEK293 , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Estructura Secundaria de Proteína , ARN Ribosómico/biosíntesis
12.
Curr Opin Cell Biol ; 52: 105-111, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29529563

RESUMEN

The nucleolus is the largest nuclear sub-compartment in which the early steps of ribosome biogenesis take place. It also plays an essential role in the assembly and function of non-ribosomal ribonucleoprotein (RNP) complexes, controls cell cycle progression and senses environmental stress. The spatial organization and dynamics of nucleolar proteins and RNA is regulated at different structural levels, which finally determine nucleolar architecture. The intimate link between nucleolar structure and function is reflected by transcription-dependent changes in nucleolus-associated chromatin, overall morphological alterations in response to external cues, and the liquid droplet-like behavior of nucleolar compartments. Here we provide a concise overview of the latest studies which integrate novel trends in nucleolar architecture research into the context of cell biology.


Asunto(s)
Nucléolo Celular/genética , Proteínas Nucleares/genética , Humanos , Proteínas Nucleares/metabolismo
13.
RNA ; 24(3): 371-380, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29222118

RESUMEN

Triplexes are noncanonical DNA structures, which are functionally associated with regulation of gene expression through ncRNA targeting to chromatin. Based on the rules of Hoogsteen base-pairing, polypurine sequences of a duplex can potentially form triplex structures with single-stranded oligonucleotides. Prediction of triplex-forming sequences by bioinformatics analyses have revealed enrichment of potential triplex targeting sites (TTS) at regulatory elements, mainly in promoters and enhancers, suggesting a potential function of RNA-DNA triplexes in transcriptional regulation. Here, we have quantitatively evaluated the potential of different sequences of human and mouse ribosomal RNA genes (rDNA) to form triplexes at different salt and pH conditions. We show by biochemical and biophysical approaches that some of these predicted sequences form triplexes with high affinity, following the canonical rules for triplex formation. We further show that RNA triplex-forming oligos (TFOs) are more stable than their DNA counterpart, and point mutations strongly affect triplex formation. We further show differential sequence requirements of pyrimidine and purine TFO sequences for efficient binding, depending on the G-C content of the TTS. The unexpected sequence specificity, revealing distinct sequence requirements for purine and pyrimidine TFOs, shows that in addition to the Hoogsteen pairing rules, a sequence code and mutations have to be taken into account to predict genomic TTS.


Asunto(s)
ADN Ribosómico/genética , ADN/genética , Oligonucleótidos/genética , Animales , Emparejamiento Base , Sitios de Unión , ADN/química , ADN Ribosómico/química , Ensayo de Cambio de Movilidad Electroforética , Humanos , Ratones , Oligonucleótidos/química , Mutación Puntual , Regiones Promotoras Genéticas/genética , Purinas/química , Pirimidinas/química , Secuencias Reguladoras de Ácidos Nucleicos/genética
14.
Genes Dev ; 31(13): 1370-1381, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28790157

RESUMEN

R loops are three-stranded nucleic acid structures consisting of an RNA:DNA heteroduplex and a "looped-out" nontemplate strand. As aberrant formation and persistence of R loops block transcription elongation and cause DNA damage, mechanisms that resolve R loops are essential for genome stability. Here we show that the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase DDX21 efficiently unwinds R loops and that depletion of DDX21 leads to accumulation of cellular R loops and DNA damage. Significantly, the activity of DDX21 is regulated by acetylation. Acetylation by CBP inhibits DDX21 activity, while deacetylation by SIRT7 augments helicase activity and overcomes R-loop-mediated stalling of RNA polymerases. Knockdown of SIRT7 leads to the same phenotype as depletion of DDX21 (i.e., increased formation of R loops and DNA double-strand breaks), indicating that SIRT7 and DDX21 cooperate to prevent R-loop accumulation, thus safeguarding genome integrity. Moreover, DDX21 resolves estrogen-induced R loops on estrogen-responsive genes in breast cancer cells, which prevents the blocking of transcription elongation on these genes.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Inestabilidad Genómica/genética , Conformación de Ácido Nucleico , Sirtuinas/metabolismo , Acetilación , ARN Helicasas DEAD-box/genética , ADN/química , ADN/genética , Daño del ADN/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Activación Enzimática , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células MCF-7 , Sirtuinas/genética
15.
Trends Biochem Sci ; 42(8): 585-587, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28633974

RESUMEN

Sinturel et al. demonstrate that feeding-fasting rhythms and light-dark cycles direct daily changes in liver mass and cell size. These feeding-fasting- and light-dark-driven diurnal fluctuations are controlled by an unconventional mechanism that affects ribosome assembly and protein levels during the active phase.


Asunto(s)
Ritmo Circadiano , Ribosomas , Luz , Hígado/fisiología , Fotoperiodo
16.
Nucleic Acids Res ; 45(5): 2675-2686, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28426094

RESUMEN

SIRT7 is an NAD+-dependent protein deacetylase that regulates cell growth and proliferation. Previous studies have shown that SIRT7 is required for RNA polymerase I (Pol I) transcription and pre-rRNA processing. Here, we took a proteomic approach to identify novel molecular targets and characterize the role of SIRT7 in non-nucleolar processes. We show that SIRT7 interacts with numerous proteins involved in transcriptional regulation and RNA metabolism, the majority of interactions requiring ongoing transcription. In addition to its role in Pol I transcription, we found that SIRT7 also regulates transcription of snoRNAs and mRNAs. Mechanistically, SIRT7 promotes the release of P-TEFb from the inactive 7SK snRNP complex and deacetylates CDK9, a subunit of the elongation factor P-TEFb, which activates transcription by phosphorylating serine 2 within the C-terminal domain (CTD) of Pol II. SIRT7 counteracts GCN5-directed acetylation of lysine 48 within the catalytic domain of CDK9, deacetylation promoting CTD phosphorylation and transcription elongation.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/metabolismo , Sirtuinas/metabolismo , Activación Transcripcional , Línea Celular , Humanos , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN/metabolismo , ARN Nucleolar Pequeño/biosíntesis , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Sirtuinas/química
17.
Transcription ; 8(2): 67-74, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28067587

RESUMEN

SIRT7, a member of the sirtuin family of NAD+-dependent protein deacetylases, is a key mediator of many cellular activities. SIRT7 expression is linked to cell proliferation and oncogenic activity, connecting SIRT7-dependent regulation of ribosome biogenesis with checkpoints controlling cell cycle progression, metabolic homeostasis, stress resistance, aging and tumorigenesis. Despite this important functional link, the enzymatic activity, the molecular targets and physiological functions of SIRT7 are poorly defined. Here, we review recent progress in SIRT7 research and elaborate the main pathways in which SIRT7 participates.


Asunto(s)
Sirtuinas/metabolismo , Animales , Puntos de Control del Ciclo Celular , Transformación Celular Neoplásica , ARN Polimerasas Dirigidas por ADN/metabolismo , Metabolismo Energético , Inestabilidad Genómica , Humanos , Ribosomas/genética , Ribosomas/metabolismo , Estrés Fisiológico , Transcripción Genética
18.
Nucleic Acids Res ; 44(17): 8144-52, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27257073

RESUMEN

Attenuation of ribosome biogenesis in suboptimal growth environments is crucial for cellular homeostasis and genetic integrity. Here, we show that shutdown of rRNA synthesis in response to elevated temperature is brought about by mechanisms that target both the RNA polymerase I (Pol I) transcription machinery and the epigenetic signature of the rDNA promoter. Upon heat shock, the basal transcription factor TIF-IA is inactivated by inhibition of CK2-dependent phosphorylations at Ser170/172. Attenuation of pre-rRNA synthesis in response to heat stress is accompanied by upregulation of PAPAS, a long non-coding RNA (lncRNA) that is transcribed in antisense orientation to pre-rRNA. PAPAS interacts with CHD4, the adenosine triphosphatase subunit of NuRD, leading to deacetylation of histones and movement of the promoter-bound nucleosome into a position that is refractory to transcription initiation. The results exemplify how stress-induced inactivation of TIF-IA and lncRNA-dependent changes of chromatin structure ensure repression of rRNA synthesis in response to thermo-stress.


Asunto(s)
Respuesta al Choque Térmico/genética , Nucleosomas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Largo no Codificante/metabolismo , ARN Ribosómico/biosíntesis , Animales , Quinasa de la Caseína II/metabolismo , Ensamble y Desensamble de Cromatina , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Regiones Promotoras Genéticas , Transcripción Genética
19.
Cell Rep ; 14(8): 1876-82, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904956

RESUMEN

The activity of rRNA genes (rDNA) is regulated by pathways that target the transcription machinery or alter the epigenetic state of rDNA. Previous work has established that downregulation of rRNA synthesis in quiescent cells is accompanied by upregulation of PAPAS, a long noncoding RNA (lncRNA) that recruits the histone methyltransferase Suv4-20h2 to rDNA, thus triggering trimethylation of H4K20 (H4K20me3) and chromatin compaction. Here, we show that upregulation of PAPAS in response to hypoosmotic stress does not increase H4K20me3 because of Nedd4-dependent ubiquitinylation and proteasomal degradation of Suv4-20h2. Loss of Suv4-20h2 enables PAPAS to interact with CHD4, a subunit of the chromatin remodeling complex NuRD, which shifts the promoter-bound nucleosome into the transcriptional "off" position. Thus, PAPAS exerts a "stress-tailored" dual function in rDNA silencing, facilitating either Suv4-20h2-dependent chromatin compaction or NuRD-dependent changes in nucleosome positioning.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Genes de ARNr , N-Metiltransferasa de Histona-Lisina/genética , Nucleosomas/química , Presión Osmótica , ARN Largo no Codificante/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Ensamble y Desensamble de Cromatina , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica , Células HEK293 , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Células 3T3 NIH , Ubiquitina-Proteína Ligasas Nedd4 , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Concentración Osmolar , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN Largo no Codificante/metabolismo , Transducción de Señal , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
20.
Nat Commun ; 7: 10734, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26867678

RESUMEN

SIRT7 is an NAD(+)-dependent protein deacetylase with important roles in ribosome biogenesis and cell proliferation. Previous studies have established that SIRT7 is associated with RNA polymerase I, interacts with pre-ribosomal RNA (rRNA) and promotes rRNA synthesis. Here we show that SIRT7 is also associated with small nucleolar RNP (snoRNPs) that are involved in pre-rRNA processing and rRNA maturation. Knockdown of SIRT7 impairs U3 snoRNA dependent early cleavage steps that are necessary for generation of 18S rRNA. Mechanistically, SIRT7 deacetylates U3-55k, a core component of the U3 snoRNP complex, and reversible acetylation of U3-55k modulates the association of U3-55k with U3 snoRNA. Deacetylation by SIRT7 enhances U3-55k binding to U3 snoRNA, which is a prerequisite for pre-rRNA processing. Under stress conditions, SIRT7 is released from nucleoli, leading to hyperacetylation of U3-55k and attenuation of pre-rRNA processing. The results reveal a multifaceted role of SIRT7 in ribosome biogenesis, regulating both transcription and processing of rRNA.


Asunto(s)
Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Sirtuinas/genética , Northern Blotting , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inmunoprecipitación , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA