Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(4): 1315-1322, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665672

RESUMEN

We investigated room-temperature metal and ligand K-edge X-ray absorption (XAS) spectra of a complete redox series of cubane-type iron-sulfur clusters. The Fe K-edge position provides a qualitative but convenient alternative to the traditional spectroscopic descriptors used to identify oxidation states in these systems, which we demonstrate by providing a calibration curve based on two analytic methods. Furthermore, high energy resolution fluorescence detected XAS (HERFD-XAS) at the S K-edge was used to measure Fe-S bond covalencies and record their variation with the average valence of the Fe atoms. While the Fe-S(thiolate) covalency evolves linearly, gaining 11 ± 0.4% per bond and hole, the Fe-S(µ3) covalency evolves asystematically, reflecting changes in the magnetic exchange mechanism. A strong discontinuity manifested for superoxidation to the all-ferric state, distinguishing its electronic structure and its potential (bio)chemical role from those of its redox congeners. We highlight the functional implications of these trends for the reactivity of iron-sulfur cubanes.

2.
J Am Chem Soc ; 145(2): 873-887, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36583993

RESUMEN

As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.


Asunto(s)
Hierro , NAD , Hierro/química , Modelos Moleculares , Oxidación-Reducción , Imidas/química
3.
Proc Natl Acad Sci U S A ; 119(31): e2122677119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881795

RESUMEN

Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.


Asunto(s)
Materiales Biomiméticos , Coenzimas , Hidrocarburos , Hierro , Nitrogenasa , Azufre , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Coenzimas/síntesis química , Coenzimas/química , Hidrocarburos/síntesis química , Hidrocarburos/química , Hierro/química , Nitrogenasa/química , Oxidación-Reducción , Azufre/química
4.
J Am Chem Soc ; 143(3): 1458-1465, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33430587

RESUMEN

A new supporting ligand, tris-[2-(3-mesityl-imidazol-2-ylidene)methyl]amine (TIMMNMes), was developed and utilized to isolate an air-stable iron(V) complex bearing a terminal nitrido ligand, which was synthesized by one-electron oxidation from the iron(IV) precursor. Single-crystal X-ray diffraction analyses of both complexes reveal that the metal-centered oxidation is escorted by iron nitride (Fe≡N) bond elongation, which in turn is accompanied by the accommodation of the high-valence iron center closer to the equatorial plane of a trigonal bipyramid. This contrasts with the previous observation of the only other literature-known Fe(IV)≡N/Fe(V)≡N redox pair, namely, [PhB(tBuIm)3FeN]0/+. On the basis of 57Fe Mössbauer, EPR, and UV/vis electronic absorption spectroscopy as well as quantum chemical calculations, we identified the lesser degree of pyramidalization around the iron atom, the Jahn-Teller distortion, and the resulting nature of the SOMO to be the decisive factors at play.

5.
Magn Reson (Gott) ; 1(1): 13-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37904890

RESUMEN

Homonuclear decoupling sequences in solid-state nuclear magnetic resonance (NMR) under magic-angle spinning (MAS) show experimentally significantly larger residual line width than expected from Floquet theory to second order. We present an in-depth theoretical and experimental analysis of the origin of the residual line width under decoupling based on frequency-switched Lee-Goldburg (FSLG) sequences. We analyze the effect of experimental pulse-shape errors (e.g., pulse transients and B1-field inhomogeneities) and use a Floquet-theory-based description of higher-order error terms that arise from the interference between the MAS rotation and the pulse sequence. It is shown that the magnitude of the third-order auto term of a single homo- or heteronuclear coupled spin pair is important and leads to significant line broadening under FSLG decoupling. Furthermore, we show the dependence of these third-order error terms on the angle of the effective field with the B0 field. An analysis of second-order cross terms is presented that shows that the influence of three-spin terms is small since they are averaged by the pulse sequence. The importance of the inhomogeneity of the radio-frequency (rf) field is discussed and shown to be the main source of residual line broadening while pulse transients do not seem to play an important role. Experimentally, the influence of the combination of these error terms is shown by using restricted samples and pulse-transient compensation. The results show that all terms are additive but the major contribution to the residual line width comes from the rf-field inhomogeneity for the standard implementation of FSLG sequences, which is significant even for samples with a restricted volume.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...