Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571171

RESUMEN

This paper presents the results of studies on the pervaporation properties (for benzene/hexane mixtures) and gas permeability (for He, H2, N2, O2, CO2, CH4, C2H6, and C4H10) of ladder-like polyphenylsesquioxanes (L-PPSQ) with improved physical and chemical properties. These polymers were obtained by condensation of cis-tetraphenylcyclotetrasiloxanetetraol in ammonia medium. The structure of L-PPSQ was fully confirmed by a combination of physicochemical analysis methods: 1H, 29Si NMR, IR spectroscopy, HPLC, powder XRD, and viscometry in solution. For the first time, a high molecular weight of the polymer (Mn = 238 kDa, Mw = 540 kDa) was achieved, which determines its improved mechanical properties and high potential for use in membrane separation. Using TGA and mechanical analysis methods, it was found that this polymer has high thermal (Td5% = 537 °C) and thermal-oxidative stability (Td5% = 587 °C) and good mechanical properties (Young's module (E) = 1700 MPa, ultimate tensile stress (σ) = 44 MPa, elongation at break (ε) = 6%), which is important for making membranes workable under various conditions. The polymer showed a high separation factor for a mixture of 10% wt. benzene in n-hexane (126) at a benzene flow of 33 g/(m2h).

2.
Membranes (Basel) ; 13(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37367748

RESUMEN

Membrane gas-liquid contactors have great potential to meet the challenges of amine CO2 capture. In this case, the most effective approach is the use of composite membranes. However, to obtain these, it is necessary to take into account the chemical and morphological resistance of membrane supports to long-term exposure to amine absorbents and their oxidative degradation products. In this work, we studied the chemical and morphological stability of a number of commercial porous polymeric membranes exposed to various types of alkanolamines with the addition of heat-stable salt anions as a model of real industrial CO2 amine solvents. The results of the physicochemical analysis of the chemical and morphological stability of porous polymer membranes after exposure to alkanolamines, their oxidative degradation products, and oxygen scavengers were presented. According to the results of studies by FTIR spectroscopy and AFM, a significant destruction of porous membranes based on polypropylene (PP), polyvinylidenefluoride (PVDF), polyethersulfone (PES) and polyamide (nylon, PA) was revealed. At the same time, the polytetrafluoroethylene (PTFE) membranes had relatively high stability. On the basis of these results, composite membranes with porous supports that are stable in amine solvents can be successfully obtained to create liquid-liquid and gas-liquid membrane contactors for membrane deoxygenation.

3.
Membranes (Basel) ; 13(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233552

RESUMEN

The thermal-oxidative degradation of aqueous solutions of carbonized monoethanolamine (MEA, 30% wt., 0.25 mol MEA/mol CO2) was studied for 336 h at 120 °C. Based on the change in the color of the solution and the formation of a precipitate, the occurrence of thermal-oxidative degradation of the MEA solution with the formation of destruction products, including insoluble ones, was confirmed. The electrokinetic activity of the resulting degradation products, including insoluble ones, was studied during the electrodialysis purification of an aged MEA solution. To understand the influence of degradation products on the ion-exchange membrane properties, a package of samples of MK-40 and MA-41 ion-exchange membranes was exposed to a degraded MEA solution for 6 months. A comparison of the efficiency of the electrodialysis treatment of a model absorption solution of MEA before and after long-time contact with degraded MEA showed that the depth of desalination was reduced by 34%, while the magnitude of the current in the ED apparatus was reduced by 25%. For the first time, the regeneration of ion-exchange membranes from MEA degradation products was carried out, which made it possible to restore the depth of desalting in the ED process by 90%.

4.
Membranes (Basel) ; 13(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36837627

RESUMEN

Solubility-selective polymer membranes are promising materials for C3+ hydrocarbons removal from methane and other permanent gas streams. To this end, a dense solubility-selective membrane based on crosslinked poly(tetradecyl methyl siloxane) was synthesized. Sorption of methane, ethane, and n-butane in the polymer was measured in the temperature range of 5-35 °C. An abnormal temperature dependence of sorption was detected, contradicting the generally accepted view of sorption as an exothermic process. In particular, methane shows minimal sorption at 5 °C. The abnormal temperature behavior was found to be related to crystallization of the alkyl side chains at temperatures below ~10 °C. Gas permeability determined by sorption and permeation methods are in reasonable agreement with each other and decrease in the order n-C4H10 > C2H6 > CH4. The solubility of these alkanes changes in the same order indicating that poly(tetradecyl methyl siloxane) is indeed the sorption-selective membrane. The diffusivities and permeabilities of studied alkanes declined with decreasing temperature, whereas the n-C4H10/CH4 permselectivity increases with decreasing temperature, reaching a value of 23 at 5 °C.

5.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36772023

RESUMEN

Membrane development for specific separation tasks is a current and important topic. In this work, the influence of OH-groups introduced in polydecylmethylsiloxane (PDecMS) was shown on the separation of CO2 from air and aldehydes from hydroformylation reaction media. OH-groups were introduced to PDecMS during hydrosilylation reaction by adding 1-decene with undecenol-1 to polymethylhydrosiloxane, and further cross-linking. Flat sheet composite membranes were developed based on these polymers. For obtained membranes, transport and separation properties were studied for individual gases (CO2, N2, O2) and liquids (1-hexene, 1-heptene, 1-octene, 1-nonene, heptanal and decanal). Sorption measurements were carried out for an explanation of difference in transport properties. The general trend was a decrease in membrane permeability with the introduction of OH groups. The presence of OH groups in the siloxane led to a significant increase in the selectivity of permeability with respect to acidic components. For example, on comparing PDecMS and OH-PDecMS (~7% OH-groups to decyl), it was shown that selectivity heptanal/1-hexene increased eight times.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...