Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088841

RESUMEN

Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.


Asunto(s)
Corteza Cerebelosa/crecimiento & desarrollo , Fibras Nerviosas/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebelosa/virología , Ratones , Ratones Transgénicos , Fibras Nerviosas/virología , Virus de la Rabia/metabolismo
2.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33338423

RESUMEN

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Asunto(s)
Cognición/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Análisis y Desempeño de Tareas , Animales , Calcio/metabolismo , Conducta de Elección , Señales (Psicología) , Imagenología Tridimensional , Integrasas/metabolismo , Ratones Endogámicos C57BL , Odorantes , Optogenética , Sustancia Gris Periacueductal/fisiología , Recompensa , Análisis de la Célula Individual , Transcriptoma/genética
3.
Proc Natl Acad Sci U S A ; 117(20): 11068-11075, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358193

RESUMEN

The projection targets of a neuronal population are a key feature of its anatomical characteristics. Historically, tissue sectioning, confocal microscopy, and manual scoring of specific regions of interest have been used to generate coarse summaries of mesoscale projectomes. We present here TrailMap, a three-dimensional (3D) convolutional network for extracting axonal projections from intact cleared mouse brains imaged by light-sheet microscopy. TrailMap allows region-based quantification of total axon content in large and complex 3D structures after registration to a standard reference atlas. The identification of axonal structures as thin as one voxel benefits from data augmentation but also requires a loss function that tolerates errors in annotation. A network trained with volumes of serotonergic axons in all major brain regions can be generalized to map and quantify axons from thalamocortical, deep cerebellar, and cortical projection neurons, validating transfer learning as a tool to adapt the model to novel categories of axonal morphology. Speed of training, ease of use, and accuracy improve over existing tools without a need for specialized computing hardware. Given the recent emphasis on genetically and functionally defining cell types in neural circuit analysis, TrailMap will facilitate automated extraction and quantification of axons from these specific cell types at the scale of the entire mouse brain, an essential component of deciphering their connectivity.


Asunto(s)
Axones , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Animales , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Redes Neurales de la Computación , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Neuronas
4.
Elife ; 82019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31647409

RESUMEN

Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behavior. To gain a fundamental understanding of their molecular heterogeneity, we used plate-based single-cell RNA-sequencing to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. Systematic in situ hybridization mapped specific clusters to the principal DR, caudal DR, or MR. These transcriptomic clusters differentially express a rich repertoire of neuropeptides, receptors, ion channels, and transcription factors. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that DR serotonin neurons co-expressing vesicular glutamate transporter-3 preferentially innervate the cortex, whereas those co-expressing thyrotropin-releasing hormone innervate subcortical regions in particular the hypothalamus. Reconstruction of 50 individual DR serotonin neurons revealed diverse and segregated axonal projection patterns at the single-cell level. Together, these results provide a molecular foundation of the heterogenous serotonin neuronal phenotypes.


Asunto(s)
Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Núcleos del Rafe/citología , Núcleos del Rafe/fisiología , Neuronas Serotoninérgicas/citología , Neuronas Serotoninérgicas/fisiología , Transcriptoma , Animales , Mapeo Encefálico , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual
5.
Proc Natl Acad Sci U S A ; 116(36): 18068-18077, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31366632

RESUMEN

The dynamics of neuronal firing during natural vision are poorly understood. Surprisingly, mean firing rates of neurons in primary visual cortex (V1) of freely behaving rodents are similar during prolonged periods of light and darkness, but it is unknown whether this reflects a slow adaptation to changes in natural visual input or insensitivity to rapid changes in visual drive. Here, we use chronic electrophysiology in freely behaving rats to follow individual V1 neurons across many dark-light (D-L) and light-dark (L-D) transitions. We show that, even on rapid timescales (1 s to 10 min), neuronal activity was only weakly modulated by transitions that coincided with the expected 12-/12-h L-D cycle. In contrast, a larger subset of V1 neurons consistently responded to unexpected L-D and D-L transitions, and disruption of the regular L-D cycle with 60 h of complete darkness induced a robust increase in V1 firing on reintroduction of visual input. Thus, V1 neurons fire at similar rates in the presence or absence of natural stimuli, and significant changes in activity arise only transiently in response to unexpected changes in the visual environment. Furthermore, although mean rates were similar in light and darkness, pairwise correlations were significantly stronger during natural vision, suggesting that information about natural scenes in V1 may be more strongly reflected in correlations than individual firing rates. Together, our findings show that V1 firing rates are rapidly and actively stabilized during expected changes in visual input and are remarkably stable at both short and long timescales.


Asunto(s)
Potenciales de Acción/fisiología , Oscuridad , Estimulación Luminosa , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Femenino , Masculino , Ratas , Ratas Long-Evans , Corteza Visual/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...