RESUMEN
In the pathogenesis of Alzheimer's disease, the overexpression of glycogen synthase kinase-3ß (GSK-3ß) stands out due to its multifaced nature, as it contributes to the promotion of amyloid ß and tau protein accumulation, as well as neuroinflammatory processes. Therefore, in the present study, we have designed, synthesized, and evaluated a new series of GSK-3ß inhibitors based on the N-(pyridin-2-yl)cyclopropanecarboxamide scaffold. We identified compound 36, demonstrating an IC50 of 70 nM against GSK-3ß. Subsequently, through crystallography studies and quantum mechanical analysis, we elucidated its binding mode and identified the structural features crucial for interactions with the active site of GSK-3ß, thereby understanding its inhibitory potency. Compound 36 was effective in the cellular model of hyperphosphorylated tau-induced neurodegeneration, where it restored cell viability after okadaic acid treatment and showed anti-inflammatory activity in the LPS model, significantly reducing NO, IL-6, and TNF-α release. In ADME-tox in vitro studies, we confirmed the beneficial profile of 36, including high permeability in PAMPA (Pe equals 9.4) and high metabolic stability in HLMs as well as lack of significant interactions with isoforms of the CYP enzymes and lack of considerable cytotoxicity on selected cell lines (IC50 > 100 µM on HT-22 cells and 89.3 µM on BV-2 cells). Based on promising pharmacological activities and favorable ADME-tox properties, compound 36 may be considered a promising candidate for in vivo research as well as constitute a reliable starting point for further studies.
Asunto(s)
Antiinflamatorios , Glucógeno Sintasa Quinasa 3 beta , Fármacos Neuroprotectores , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Humanos , Ratones , Supervivencia Celular/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteínas tau/metabolismoRESUMEN
The selective inhibition of kinases from the diabetic kinome is known to promote the regeneration of beta cells and provide an opportunity for the curative treatment of diabetes. The effect can be achieved by carefully tailoring the selectivity of inhibitor toward a particular kinase, especially DYRK1A, previously associated with Down syndrome and Alzheimer's disease. Recently DYRK1A inhibition has been shown to promote both insulin secretion and beta cells proliferation. Here, we show that commonly available flavones are effective inhibitors of DYRK1A. The observed biochemical activity of flavone compounds is confirmed by crystal structures solved at 2.06 Å and 2.32 Å resolution, deciphering the way inhibitors bind in the ATP-binding pocket of the kinase, which is driven by the arrangement of hydroxyl moieties. We also demonstrate antidiabetic properties of these biomolecules and prove that they could be further improved by therapy combined with TGF-ß inhibitors. Our data will allow future structure-based optimization of the presented scaffolds toward potent, bioavailable and selective anti-diabetic drugs.
Asunto(s)
Enfermedad de Alzheimer , Flavonas , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Flavonas/farmacología , Flavonas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Proliferación Celular , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
A clinical casein kinase 2 inhibitor, CX-4945 (silmitasertib), shows significant affinity toward the DYRK1A and GSK3ß kinases, involved in down syndrome phenotypes, Alzheimer's disease, circadian clock regulation, and diabetes. This off-target activity offers an opportunity for studying the effect of the DYRK1A/GSK3ß kinase system in disease biology and possible line extension. Motivated by the dual inhibition of these kinases, we solved and analyzed the crystal structures of DYRK1A and GSK3ß with CX-4945. We built a quantum-chemistry-based model to rationalize the compound affinity for CK2α, DYRK1A, and GSK3ß kinases. Our calculations identified a key element for CK2α's subnanomolar affinity to CX-4945. The methodology is expandable to other kinase selectivity modeling. We show that the inhibitor limits DYRK1A- and GSK3ß-mediated cyclin D1 phosphorylation and reduces kinase-mediated NFAT signaling in the cell. Given the CX-4945's clinical and pharmacological profile, this inhibitory activity makes it an interesting candidate with potential for application in additional disease areas.