Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phys Med Biol ; 69(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38774985

RESUMEN

Objective.This work investigates the use of passive luminescence detectors to determine different types of averaged linear energy transfer (LET-) for the energies relevant to proton therapy. The experimental results are compared to reference values obtained from Monte Carlo simulations.Approach.Optically stimulated luminescence detectors (OSLDs), fluorescent nuclear track detectors (FNTDs), and two different groups of thermoluminescence detectors (TLDs) were irradiated at four different radiation qualities. For each irradiation, the fluence- (LET-f) and dose-averaged LET (LET-d) were determined. For both quantities, two sub-types of averages were calculated, either considering the contributions from primary and secondary protons or from all protons and heavier, charged particles. Both simulated and experimental data were used in combination with a phenomenological model to estimate the relative biological effectiveness (RBE).Main results.All types ofLET-could be assessed with the luminescence detectors. The experimental determination ofLET-fis in agreement with reference data obtained from simulations across all measurement techniques and types of averaging. On the other hand,LET-dcan present challenges as a radiation quality metric to describe the detector response in mixed particle fields. However, excluding secondaries heavier than protons from theLET-dcalculation, as their contribution to the luminescence is suppressed by ionization quenching, leads to equal accuracy betweenLET-fandLET-d. Assessment of RBE through the experimentally determinedLET-dvalues agrees with independently acquired reference values, indicating that the investigated detectors can determineLET-with sufficient accuracy for proton therapy.Significance.OSLDs, TLDs, and FNTDs can be used to determineLET-and RBE in proton therapy. With the capability to determine dose through ionization quenching corrections derived fromLET-, OSLDs and TLDs can simultaneously ascertain dose,LET-, and RBE. This makes passive detectors appealing for measurements in phantoms to facilitate validation of clinical treatment plans or experiments related to proton therapy.


Asunto(s)
Transferencia Lineal de Energía , Método de Montecarlo , Terapia de Protones , Terapia de Protones/instrumentación , Dosis de Radiación , Efectividad Biológica Relativa
2.
Materials (Basel) ; 16(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903093

RESUMEN

Modern radiotherapy (RT) techniques, such as proton therapy, require more and more sophisticated dosimetry methods and materials. One of the newly developed technologies is based on flexible sheets made of a polymer, with the embedded optically stimulated luminescence (OSL) material in the form of powder (LiMgPO4, LMP) and a self-developed optical imaging setup. The detector properties were evaluated to study its potential application in the proton treatment plan verification for eyeball cancer. The data showed a well-known effect of lower luminescent efficiency of the LMP material response to proton energy. The efficiency parameter depends on a given material and radiation quality parameters. Therefore, the detailed knowledge of material efficiency is crucial in establishing a calibration method for detectors exposed to mixed radiation fields. Thus, in the present study, the prototype of the LMP-based silicone foil material was tested with monoenergetic uniform proton beams of various initial kinetic energies constituting the so-called spread-out Bragg peak (SOBP). The irradiation geometry was also modelled using the Monte Carlo particle transport codes. Several beam quality parameters, including dose and the kinetic energy spectrum, were scored. Finally, the obtained results were used to correct the relative luminescence efficiency response of the LMP foils for monoenergetic and spread-out proton beams.

3.
Med Phys ; 50(1): 651-659, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36321465

RESUMEN

BACKGROUND: For proton therapy, a relative biological effectiveness (RBE) of 1.1 has broadly been applied clinically. However, as unexpected toxicities have been observed by the end of the proton tracks, variable RBE models have been proposed. Typically, the dose-averaged linear energy transfer (LETd ) has been used as an input variable for these models but the way the LETd was defined, calculated, or determined was not always consistent, potentially impacting the corresponding RBE value. PURPOSE: This study compares consistently calculated LETd with other quantities as input variables for a phenomenological RBE model and attempts to determine which quantity that can best predicts proton RBE. The comparison was performed within the frame of introducing a new model for the proton RBE. METHODS: High-throughput experimental setups of in vitro cell survival studies for proton RBE determination are simulated using the SHIELD-HIT12A Monte Carlo particle transport code. Together with LET, z ∗ 2 / ß 2 $z^{*2}/\beta ^2$ , here called effective Q (Qeff ), and Q are scored. Each quantity is calculated using the dose and track averaging methods, because the scoring includes all hadronic particles, all protons or only primaries. A phenomenological linear-quadratic-based RBE model is subsequently applied to the in vitro data with the various beam quality descriptors used as input variables and the goodness of fit is determined and compared using a bootstrapping approach. Both linear and nonlinear fit functions were tested. RESULTS: Versions of Qeff and Q outperform LET with a statistically significant margin, with the best nonlinear and linear fit having a relative root mean square error (RMSE) for RBE2Gy ± one standard error of 1.55 ± 0.04 (Qeff, t, primary ) and 2.84 ± 0.07 (Qeff, d, primary ), respectively. For comparison, the corresponding best nonlinear and linear fits for LETd, all protons had a relative RMSE of 2.07 ± 0.06 and 3.39 ± 0.08, respectively. Applying Welch's t-test for comparing the calculated RMSE of RBE2Gy resulted in two-tailed p-values of <0.002 for all Q and Qeff quantities compared to LETd, all protons . CONCLUSIONS: The study shows that Q or Qeff could be better RBE descriptors that dose averaged LET.


Asunto(s)
Terapia de Protones , Terapia de Protones/métodos , Efectividad Biológica Relativa , Protones , Supervivencia Celular , Modelos Lineales , Método de Montecarlo
4.
Acta Oncol ; 61(2): 206-214, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34686122

RESUMEN

BACKGROUND: Clinical data suggest that the relative biological effectiveness (RBE) in proton therapy (PT) varies with linear energy transfer (LET). However, LET calculations are neither standardized nor available in clinical routine. Here, the status of LET calculations among European PT institutions and their comparability are assessed. MATERIALS AND METHODS: Eight European PT institutions used suitable treatment planning systems with their center-specific beam model to create treatment plans in a water phantom covering different field arrangements and fulfilling commonly agreed dose objectives. They employed their locally established LET simulation environments and procedures to determine the corresponding LET distributions. Dose distributions D1.1 and DRBE assuming constant and variable RBE, respectively, and LET were compared among the institutions. Inter-center variability was assessed based on dose- and LET-volume-histogram parameters. RESULTS: Treatment plans from six institutions fulfilled all clinical goals and were eligible for common analysis. D1.1 distributions in the target volume were comparable among PT institutions. However, corresponding LET values varied substantially between institutions for all field arrangements, primarily due to differences in LET averaging technique and considered secondary particle spectra. Consequently, DRBE using non-harmonized LET calculations increased inter-center dose variations substantially compared to D1.1 and significantly in mean dose to the target volume of perpendicular and opposing field arrangements (p < 0.05). Harmonizing LET reporting (dose-averaging, all protons, LET to water or to unit density tissue) reduced the inter-center variability in LET to the order of 10-15% within and outside the target volume for all beam arrangements. Consequentially, inter-institutional variability in DRBE decreased to that observed for D1.1. CONCLUSION: Harmonizing the reported LET among PT centers is feasible and allows for consistent multi-centric analysis and reporting of tumor control and toxicity in view of a variable RBE. It may serve as basis for harmonized variable RBE dose prescription in PT.


Asunto(s)
Transferencia Lineal de Energía , Terapia de Protones , Humanos , Método de Montecarlo , Protones , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa
5.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638254

RESUMEN

Clinical routine in proton therapy currently neglects the radiobiological impact of nuclear target fragments generated by proton beams. This is partially due to the difficult characterization of the irradiation field. The detection of low energetic fragments, secondary protons and fragments, is in fact challenging due to their very short range. However, considering their low residual energy and therefore high LET, the possible contribution of such heavy particles to the overall biological effect could be not negligible. In this context, we performed a systematic analysis aimed at an explicit assessment of the RBE (relative biological effectiveness, i.e., the ratio of photon to proton physical dose needed to achieve the same biological effect) contribution of target fragments in the biological dose calculations of proton fields. The TOPAS Monte Carlo code has been used to characterize the radiation field, i.e., for the scoring of primary protons and fragments in an exemplary water target. TRiP98, in combination with LEM IV RBE tables, was then employed to evaluate the RBE with a mixed field approach accounting for fragments' contributions. The results were compared with that obtained by considering only primary protons for the pristine beam and spread out Bragg peak (SOBP) irradiations, in order to estimate the relative weight of target fragments to the overall RBE. A sensitivity analysis of the secondary particles production cross-sections to the biological dose has been also carried out in this study. Finally, our modeling approach was applied to the analysis of a selection of cell survival and RBE data extracted from published in vitro studies. Our results indicate that, for high energy proton beams, the main contribution to the biological effect due to the secondary particles can be attributed to secondary protons, while the contribution of heavier fragments is mainly due to helium. The impact of target fragments on the biological dose is maximized in the entrance channels and for small α/ß values. When applied to the description of survival data, model predictions including all fragments allowed better agreement to experimental data at high energies, while a minor effect was observed in the peak region. An improved description was also obtained when including the fragments' contribution to describe RBE data. Overall, this analysis indicates that a minor contribution can be expected to the overall RBE resulting from target fragments. However, considering the fragmentation effects can improve the agreement with experimental data for high energy proton beams.

6.
Radiother Oncol ; 161: 211-221, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33894298

RESUMEN

Linear Energy Transfer (LET) is widely used to express the radiation quality of ion beams, when characterizing the biological effectiveness. However, averaged LET may be defined in multiple ways, and the chosen definition may impact the resulting reported value. We review averaged LET definitions found in the literature, and quantify which impact using these various definitions have for different reference setups. We recorded the averaged LET definitions used in 354 publications quantifying the relative biological effectiveness (RBE) of hadronic beams, and investigated how these various definitions impact the reported averaged LET using a Monte Carlo particle transport code. We find that the kind of averaged LET being applied is, generally, poorly defined. Some definitions of averaged LET may influence the reported averaged LET values up to an order of magnitude. For publications involving protons, most applied dose averaged LET when reporting RBE. The absence of what target medium is used and what secondary particles are included further contributes to an ill-defined averaged LET. We also found evidence of inconsistent usage of averaged LET definitions when deriving LET-based RBE models. To conclude, due to commonly ill-defined averaged LET and to the inherent problems of LET-based RBE models, averaged LET may only be used as a coarse indicator of radiation quality. We propose a more rigorous way of reporting LET values, and suggest that ideally the entire particle fluence spectra should be recorded and provided for future RBE studies, from which any type of averaged LET (or other quantities) may be inferred.


Asunto(s)
Transferencia Lineal de Energía , Terapia de Protones , Humanos , Método de Montecarlo , Protones , Radiobiología , Efectividad Biológica Relativa
7.
Int J Radiat Biol ; 96(10): 1238-1244, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32780616

RESUMEN

PURPOSE: Conventional X-ray radiotherapy induces a pro-inflammatory response mediated by altered expression of inflammation-regulating cytokines. Proton scanning and X-ray irradiation produce distinct changes to cytokine gene expression in vitro suggesting that proton beam therapy may induce an inflammatory response dissimilar to that of X-ray radiation. The purpose of the present study was to determine whether proton scanning beam radiation and conventional X-ray photon radiation would induce differential regulation of circulating cytokines in vivo. MATERIALS AND METHODS: Female CDF1 mice were irradiated locally at the right hind leg using proton pencil beam scanning or X-ray photons. Blood samples were obtained from two separate mice groups. Samples from one group were drawn by retro-orbital puncture 16 months post irradiation, while samples from the other group were drawn 5 and 30 days post irradiation. Concentration of the cytokines IL-6, IL-1ß, IL-10, IL-17A, IFN-γ, and TNFα was measured in plasma using bead-based immunoassays. RESULTS: The cytokines IL-6, IL-1ß, IL-10, IFN-γ, and TNFα were expressed at lower levels in plasma samples from proton-irradiated mice compared with X-ray-irradiated mice 16 months post irradiation. The same cytokines were downregulated in proton-irradiated mice 5 days post irradiation when compared to controls, while at day 30 expression had increased to the same level or higher. X-ray radiation did not markedly change expression levels at days 5 and 30. CONCLUSIONS: The inflammatory response to proton and X-ray irradiation seem to be distinct as the principal pro-inflammatory cytokines are differentially regulated short- and long-term following irradiation. Both the development of normal tissue damage and efficacy of immunotherapy could be influenced by an altered inflammatory response to irradiation.


Asunto(s)
Citocinas/metabolismo , Protones , Animales , Femenino , Inflamación/metabolismo , Ratones , Piel/metabolismo , Piel/efectos de la radiación , Factores de Tiempo , Rayos X
8.
Int J Radiat Oncol Biol Phys ; 103(5): 1203-1211, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529373

RESUMEN

PURPOSE: To identify differential cellular responses after proton and photon irradiation by comparing transcriptomes of primary fibroblasts irradiated with either radiation type. METHODS AND MATERIALS: A panel of primary dermal fibroblast cultures was irradiated with low and higher linear energy transfer (LET) proton beams. Cobalt-60 photon irradiation was used as reference. Dose was delivered in 3 fractions of 3.5 Gy (relative biological effectiveness) using a relative biological effectiveness of 1.1 for proton doses. Cells were harvested 2 hours after the final fraction was delivered, and RNA was purified. RNA sequencing was performed using Illumina NextSeq 500 with high-output kit. The edgeR package in R was used for differential gene expression analysis. RESULTS: Pairwise comparisons of the transcriptomes in the 3 treatment groups showed that there were 84 and 56 differentially expressed genes in the low LET group compared with the Cobalt-60 group and the higher LET group, respectively. The higher LET proton group and the Cobalt-60 group had the most distinct transcriptome profiles, with 725 differentially regulated genes. Differentially regulated canonical pathways and various regulatory factors involved in regulation of biological mechanisms such as inflammation, carcinogenesis, and cell cycle control were identified. CONCLUSIONS: Inflammatory regulators associated with the development of normal tissue complications and malignant transformation factors seem to be differentially regulated by higher LET proton and Cobalt-60 photon irradiation. The reported transcriptome differences could therefore influence the progression of adverse effects and the risk of developing secondary cancers.


Asunto(s)
Radioisótopos de Cobalto/farmacología , Fibroblastos/efectos de la radiación , Perfilación de la Expresión Génica/métodos , Transferencia Lineal de Energía , Fotones , Protones , Transcriptoma/efectos de la radiación , Carcinogénesis/genética , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Humanos , Inflamación/genética , Método de Montecarlo , Reacción en Cadena en Tiempo Real de la Polimerasa , Efectividad Biológica Relativa , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética
9.
Radiat Prot Dosimetry ; 183(1-2): 251-254, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30566667

RESUMEN

Radiotherapy beams of protons or heavier ions generate secondary particles through nuclear interactions over different patient tissues. The resulting particle spectra depend on the tissue composition and on charge and energy of the primary beam ions. In proton radiotherapy, predictive radiobiological models usually apply dose-averaged linear energy transfer (LET). Microdosimetry-based models for proton or heavier ion primary beams also rely on dose-averaged quantities, the values of which depend on whether the produced secondaries are included or excluded in the calculation. In turn, this will affect the results of calculations of the relative biological effectiveness (RBE) of these beams. In this brief note, we study quantitatively the influence of the secondary radiation spectra on the averaged expectation values of LET and their impact on predictions of RBE. It is noted that for microdosimetry-based quantities and for corresponding LET-based parameters the trends are similar and that fluence-averaged quantities should be studied more closely.


Asunto(s)
Terapia de Protones/métodos , Radiometría/métodos , Efectividad Biológica Relativa , Relación Dosis-Respuesta en la Radiación , Iones Pesados , Humanos , Transferencia Lineal de Energía , Radiobiología , Dosificación Radioterapéutica
10.
Phys Med Biol ; 63(24): 245020, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30523868

RESUMEN

A ripple filter (RiFi) is a passive energy modulator used in scanned particle therapy to broaden the Bragg peak, thus lowering the number of accelerator energies required for homogeneous target coverage, which significantly reduces the irradiation time. As we have previously shown, a new 6 mm thick RiFi with 2D groove shapes produced with 3D printing can be used in carbon ion treatments with a similar target coverage and only a marginally worse planning conformity compared to treatments with in-use 3 mm thick RiFis of an older 1D design. Where RiFis are normally not used with protons due to larger scattering and straggling effects, this new design would be beneficial in proton therapy too. Measurements of proton Bragg curves and lateral beam profiles were carried out for different RiFi designs and thicknesses as well as for no RiFi at the Heidelberg Ionenstrahl-Therapiezentrum. Base data for proton treatment planning were generated with the Monte Carlo code SHIELD-HIT12A with and without the 2D 6 mm RiFi. Plans on spherical targets in water were calculated with TRiP98 for a systematic RiFi performance analysis and for comparisons with carbon ion plans for the same respective energy depth step sizes. Plans for 9 stage I static non small cell lung cancer patients were calculated with Eclipse 13.7.15. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Measurements confirm the functionality of the new 2D RiFi design, which reduces the beam spot size compared to 1D RiFis of the same thickness. Planning studies show that a 6 mm thick 2D RiFi could be used in proton therapy to lower the irradiation time. Although slightly worse planning conformity and dose homogeneity were found for plans with the RiFi compared to plans without, satisfactory results within the planning objective were obtained for all cases.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia de Protones/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Carbono/uso terapéutico , Simulación por Computador , Humanos , Método de Montecarlo , Fantasmas de Imagen , Impresión Tridimensional , Protones , Radiometría , Reproducibilidad de los Resultados , Dispersión de Radiación , Agua
11.
Sci Rep ; 8(1): 12688, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139945

RESUMEN

The transcriptional response of cells exposed to proton radiation is not equivalent to the response induced by traditional photon beams. Changes in cellular signalling is most commonly studied using the method Quantitative polymerase chain reaction (qPCR). Stable reference genes must be used to accurately quantify target transcript expression. The study aim was to identify suitable reference genes for normalisation of gene expression levels in normal dermal fibroblasts irradiated with either proton or photon beams. The online tool RefFinder was used to analyse and identify the most stably expressed genes from a panel of 22 gene candidates. To assess the reliability of the identified reference genes, a selection of the most and least stable reference genes was used to normalise target transcripts of interest. Fold change levels varied considerably depending on the used reference gene. The top ranked genes IPO8, PUM1, MRPL19 and PSMC4 produced highly similar target gene expression, while expression using the worst ranked genes, TFRC and HPRT1, was clearly modified due to reference gene instability.


Asunto(s)
Fibroblastos/metabolismo , Fotones , Protones , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Células Cultivadas , Fibroblastos/efectos de la radiación , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Método de Montecarlo
12.
Radiat Prot Dosimetry ; 180(1-4): 296-299, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29378068

RESUMEN

The linear energy transfer (LET) is commonly used as a parameter which describes the quality of the radiation applied in radiation therapy with fast ions. In particular in proton therapy, most models which predict the radiobiological properties of the applied beam, are fitted to the dose-averaged LET, LETd. The related parameter called the fluence- or track-averaged LET, LETt, is less frequently used. Both LETt and in particular LETd depends profoundly on the encountered secondary particle spectrum. For proton beams including all secondary particles, LETd may reach more than 3 keV/um in the entry channel of the proton field. However, typically the charged particle spectrum is only averaged over the primary and secondary protons, which is in the order of 0.5 keV/um for the same region. This is equal to assuming that the secondary particle spectrum from heavier ions is irrelevant for the resulting radiobiology, which is an assertion in the need of closer investigation. Models which rely on LETd should also be clear on what type of LETd is used, which is not always the case. Within this work, we have extended the Monte Carlo particle transport code SHIELD-HIT12A to provide dose- and track-average LET-maps for ion radiation therapy treatment plans.


Asunto(s)
Radioterapia de Iones Pesados , Transferencia Lineal de Energía , Método de Montecarlo , Fantasmas de Imagen , Terapia de Protones , Simulación por Computador , Humanos , Radiobiología , Efectividad Biológica Relativa
13.
Radiat Prot Dosimetry ; 180(1-4): 282-285, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351651

RESUMEN

Proton radiotherapy requires precise knowledge of the volumetric dose distribution. In proton beam delivery systems, based on narrow pencil beams, a contribution from small doses in low-intensity regions, consisting mainly of scattered protons, may have not negligible influence on total dose delivered to patient. Insufficient information about dose profile can cause underestimation of dose and potential delivery of inflated dose during hadrontherapy treatment. Presented work aims to verify applicability of diamond detectors, produced by Chemical Vapor Deposition method, for therapeutic proton beam profilometry at large fields. This requires the capability of measuring the core of the beam intensity profile (wide dynamic range) as well as its lateral spread (very high sensitivity) with a single device.


Asunto(s)
Diamante , Protones , Radiometría/instrumentación , Dosificación Radioterapéutica , Dispersión de Radiación , Ciclotrones , Electrónica , Humanos , Distribución Normal , Oscilometría , Radiactividad , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
14.
Acta Oncol ; 56(11): 1406-1412, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28885067

RESUMEN

INTRODUCTION: Proton beam therapy delivers a more conformal dose distribution than conventional radiotherapy, thus improving normal tissue sparring. Increasing linear energy transfer (LET) along the proton track increases the relative biological effectiveness (RBE) near the distal edge of the Spread-out Bragg peak (SOBP). The severity of normal tissue side effects following photon beam radiotherapy vary considerably between patients. AIM: The dual study aim was to identify gene expression patterns specific to radiation type and proton beam position, and to assess whether individual radiation sensitivity influences gene expression levels in fibroblast cultures irradiated in vitro. METHODS: The study includes 30 primary fibroblast cell cultures from patients previously classified as either radiosensitive or radioresistant. Cells were irradiated at three different positions in the proton beam profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis and angiogenesis. RESULTS: Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated by different radiation qualities. Radiosensitive patient samples had the strongest regulation of gene expression; irrespective of radiation type. CONCLUSIONS: Our findings indicate that the increased LET at the SOBP distal edge position did not generally lead to increased transcriptive response in primary fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue damage in patients treated with proton beam therapy.


Asunto(s)
Radioisótopos de Cobalto/farmacología , Fibroblastos/metabolismo , Fibrosis/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de la radiación , Protones , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Fibrosis/diagnóstico , Fibrosis/etiología , Humanos , Transferencia Lineal de Energía
15.
Acta Oncol ; 56(11): 1387-1391, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28830292

RESUMEN

INTRODUCTION: The aim of the present study was to examine the RBE for early damage in an in vivo mouse model, and the effect of the increased linear energy transfer (LET) towards the distal edge of the spread-out Bragg peak (SOBP). METHOD: The lower part of the right hind limb of CDF1 mice was irradiated with single fractions of either 6 MV photons, 240 kV photons or scanning beam protons and graded doses were applied. For the proton irradiation, the leg was either placed in the middle of a 30-mm SOBP, or to assess the effect in different positions, irradiated in 4 mm intervals from the middle of the SOBP to behind the distal dose fall-off. Irradiations were performed with the same dose plan at all positions, corresponding to a dose of 31.25 Gy in the middle of the SOBP. Endpoint of the study was early skin damage of the foot, assessed by a mouse foot skin scoring system. RESULTS: The MDD50 values with 95% confidence intervals were 36.1 (34.2-38.1) Gy for protons in the middle of the SOBP for score 3.5. For 6 MV photons, it was 35.9 (34.5-37.5) Gy and 32.6 (30.7-34.7) Gy for 240 kV photons for score 3.5. The corresponding RBE was 1.00 (0.94-1.05), relative to 6 MV photons and 0.9 (0.85-0.97) relative to 240 kV photons. In the mice group positioned at the SOBP distal dose fall-off, 25% of the mice developed early skin damage compared with 0-8% in other groups. LETd,z = 1 was 8.4 keV/µm at the distal dose fall-off and the physical dose delivered was 7% lower than in the central SOBP position, where LETd,z =1 was 3.3 keV/µm. CONCLUSIONS: Although there is a need to expand the current study to be able to calculate an exact enhancement ratio, an enhanced biological effect in vivo for early skin damage in the distal edge was demonstrated.


Asunto(s)
Protones/efectos adversos , Efectividad Biológica Relativa , Piel/patología , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Transferencia Lineal de Energía , Ratones , Piel/efectos de la radiación
16.
Radiat Environ Biophys ; 53(4): 745-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25037857

RESUMEN

The aim of the study was to determine the relative biological effectiveness (RBE) of a 60-MeV proton radiotherapy beam at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) in Kraków, the first one to operate in Poland. RBE was assessed at the surviving fractions (SFs) of 0.01, 0.1, and 0.37, for normal human fibroblasts from three cancer patients. The cells were irradiated near the Bragg peak of the pristine beam and at three depths within a 28.4-mm spread-out Bragg peak (SOBP). Reference radiation was provided by 6-MV X-rays. The mean RBE value at SF = 0.01 for fibroblasts irradiated near the Bragg peak of pristine beam ranged between 1.06 and 1.15. The mean RBE values at SF = 0.01 for these cells exposed at depths of 2, 15, and 27 mm of the SOBP ranged between 0.95-1.00, 0.97-1.02, and 1.05-1.11, respectively. A trend was observed for RBE values to increase with survival level and with depth in the SOBP: at SF = 0.37 and at the depth of 27 mm, RBE values attained their maximum (1.19-1.24). The RBE values estimated at SF = 0.01 using normal human fibroblasts for the 60-MeV proton radiotherapy beam at the IFJ PAN in Kraków are close to values of 1.0 and 1.1, used in clinical practice.


Asunto(s)
Física Nuclear , Terapia de Protones , Supervivencia Celular/efectos de la radiación , Femenino , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Humanos , Polonia , Efectividad Biológica Relativa , Neoplasias del Cuello Uterino/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...