Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1112, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919390

RESUMEN

Most functional eukaryotic mRNAs contain a 5' 7-methylguanosine (m7G) cap. Although capping is essential for many biological processes including mRNA processing, export and translation, the fate of uncapped transcripts has not been studied extensively. Here, we employed fast nuclear depletion of the capping enzymes in Saccharomyces cerevisiae to uncover the turnover of the transcripts that failed to be capped. We show that although the degradation of cap-deficient mRNA is dominant, the levels of hundreds of non-capped mRNAs increase upon depletion of the capping enzymes. Overall, the abundance of non-capped mRNAs is inversely correlated to the expression levels, altogether resembling the effects observed in cells lacking the cytoplasmic 5'-3' exonuclease Xrn1 and indicating differential degradation fates of non-capped mRNAs. The inactivation of the nuclear 5'-3' exonuclease Rat1 does not rescue the non-capped mRNA levels indicating that Rat1 is not involved in their degradation and consequently, the lack of the capping does not affect the distribution of RNA Polymerase II on the chromatin. Our data indicate that the cap presence is essential to initiate the Xrn1-dependent degradation of mRNAs underpinning the role of 5' cap in the Xrn1-dependent buffering of the cellular mRNA levels.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exonucleasas/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Hum Mol Genet ; 32(4): 608-620, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36084040

RESUMEN

Mutations and aberrant gene expression during cellular differentiation lead to neurodevelopmental disorders, such as Prader-Willi syndrome (PWS), which results from the deletion of an imprinted locus on paternally inherited chromosome 15. We analyzed chromatin-associated RNA in human induced pluripotent cells (iPSCs) upon depletion of hybrid small nucleolar long non-coding RNAs (sno-lncRNAs) and 5' snoRNA capped and polyadenylated long non-coding RNAs (SPA-lncRNAs) transcribed from the locus deleted in PWS. We found that rapid ablation of these lncRNAs affects transcription of specific gene classes. Downregulated genes contribute to neurodevelopment and neuronal maintenance, while upregulated genes are predominantly involved in the negative regulation of cellular metabolism and apoptotic processes. Our data reveal the importance of SPA-lncRNAs and sno-lncRNAs in controlling gene expression in iPSCs and provide a platform for synthetic experimental approaches in PWS studies. We conclude that ncRNAs transcribed from the PWS locus are critical regulators of a transcriptional signature, which is important for neuronal differentiation and development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Prader-Willi , ARN Largo no Codificante , Humanos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , ARN no Traducido , ARN Nucleolar Pequeño/genética , ARN Largo no Codificante/genética , Impresión Genómica
3.
Cell Rep ; 36(10): 109671, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496258

RESUMEN

Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.


Asunto(s)
Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Histona Desacetilasas/metabolismo , Schizosaccharomyces/metabolismo , Histonas/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
4.
Angew Chem Int Ed Engl ; 60(33): 18144-18151, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-33915014

RESUMEN

The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.


Asunto(s)
Regiones no Traducidas 5' , Antivirales/farmacología , Sustancias Macromoleculares/farmacología , ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Antivirales/metabolismo , Chlorocebus aethiops , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Genoma Viral/efectos de los fármacos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Metales Pesados/química , Simulación de Dinámica Molecular , ARN/genética , SARS-CoV-2/química , Células Vero
5.
Angew Chem Weinheim Bergstr Ger ; 133(33): 18292-18299, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38505190

RESUMEN

The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.

6.
J Vis Exp ; (151)2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31566620

RESUMEN

Guide box C/D small nucleolar RNAs (snoRNAs) catalyze 2'-O-methylation of ribosomal and small nuclear RNA. However, a large number of snoRNA in higher eukaryotes may promiscuously recognize other RNA species and 2'-O-methylate multiple targets. Here, we provide step-by-step guide for the fast and non-expensive analysis of the site-specific 2'-O-methylation using a well-established method employing short DNA oligonucleotides called DNAzymes. These DNA fragments contain catalytic sequences which cleave RNA at specific consensus positions, as well as variable homology arms directing DNAzyme to its RNA targets. DNAzyme activity is inhibited by 2-'O-methylation of the nucleotide adjacent to the cleavage site in the RNA. Thus, DNAzymes, limited only by the consensus of the cleaved sequence, are perfect tools for the quick analysis of snoRNA-mediated RNA 2'-O-methylation. We analyzed snoRNA snR13- and snR47-guided 2'-O-methylation of 25S ribosomal RNA in Saccharomyces cerevisiae to demonstrate the simplicity of the technique and to provide a detailed protocol for the DNAzyme-dependent assay.


Asunto(s)
ADN Catalítico/metabolismo , Genes de ARNr/fisiología , ARN Nucleolar Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ADN Catalítico/genética , Metilación , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Trends Genet ; 35(2): 104-117, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30563726

RESUMEN

Transcribing RNA Polymerase II interacts with multiple factors that orchestrate maturation and stabilisation of messenger RNA. For the majority of noncoding RNAs, the polymerase complex employs entirely different strategies, which usually direct the nascent transcript to ribonucleolytic degradation. However, some noncoding RNA classes use endo- and exonucleases to achieve functionality. Here we review processing of small nucleolar RNAs that are transcribed by RNA Polymerase II as precursors, and whose 5' and 3' ends undergo processing to release mature, functional molecules. The maturation strategies of these noncoding RNAs in various organisms follow a similar pattern but employ different factors and are strictly correlated with genomic organisation of their genes.


Asunto(s)
ARN Polimerasa II/genética , ARN Nucleolar Pequeño/genética , Transcripción Genética , Humanos , ARN Largo no Codificante/genética , ARN Mensajero/genética
8.
Elife ; 72018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30507380

RESUMEN

Replication-dependent (RD) core histone mRNA produced during S-phase is the only known metazoan protein-coding mRNA presenting a 3' stem-loop instead of the otherwise universal polyA tail. A metallo ß-lactamase (MBL) fold enzyme, cleavage and polyadenylation specificity factor 73 (CPSF73), is proposed to be the sole endonuclease responsible for 3' end processing of both mRNA classes. We report cellular, genetic, biochemical, substrate selectivity, and crystallographic studies providing evidence that an additional endoribonuclease, MBL domain containing protein 1 (MBLAC1), is selective for 3' processing of RD histone pre-mRNA during the S-phase of the cell cycle. Depletion of MBLAC1 in cells significantly affects cell cycle progression thus identifying MBLAC1 as a new type of S-phase-specific cancer target.


Asunto(s)
Endorribonucleasas/química , Histonas/biosíntesis , ARN Mensajero/biosíntesis , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Hidrolasas , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , beta-Lactamasas/química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
9.
Nucleic Acids Res ; 46(21): 11528-11538, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30247719

RESUMEN

The 3'-ends of eukaryotic pre-mRNAs are processed in the nucleus by a large multiprotein complex, the cleavage and polyadenylation factor (CPF). CPF cleaves RNA, adds a poly(A) tail and signals transcription termination. CPF harbors four enzymatic activities essential for these processes, but how these are coordinated remains poorly understood. Several subunits of CPF, including two protein phosphatases, are also found in the related 'associated with Pta1' (APT) complex, but the relationship between CPF and APT is unclear. Here, we show that the APT complex is physically distinct from CPF. The 21 kDa Syc1 protein is associated only with APT, and not with CPF, and is therefore the defining subunit of APT. Using ChIP-seq, PAR-CLIP and RNA-seq, we show that Syc1/APT has distinct, but possibly overlapping, functions from those of CPF. Syc1/APT plays a more important role in sn/snoRNA production whereas CPF processes the 3'-ends of protein-coding pre-mRNAs. These results define distinct protein machineries for synthesis of mature eukaryotic protein-coding and non-coding RNAs.


Asunto(s)
Complejos Multiproteicos/metabolismo , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Inmunoprecipitación de Cromatina , Complejos Multiproteicos/genética , Subunidades de Proteína , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Escisión y Poliadenilación de ARNm/genética
10.
Nat Commun ; 9(1): 1783, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725044

RESUMEN

Small nucleolar RNA (snoRNA) are conserved and essential non-coding RNA that are transcribed by RNA Polymerase II (Pol II). Two snoRNA classes, formerly distinguished by their structure and ribonucleoprotein composition, act as guide RNA to target RNA such as ribosomal RNA, and thereby introduce specific modifications. We have studied the 5'end processing of individually transcribed snoRNA in S. cerevisiae to define their role in snoRNA biogenesis and functionality. Here we show that pre-snoRNA processing by the endonuclease Rnt1 occurs co-transcriptionally with removal of the m7G cap facilitating the formation of box C/D snoRNA. Failure of this process causes aberrant 3'end processing and mislocalization of snoRNA to the cytoplasm. Consequently, Rnt1-dependent 5'end processing of box C/D snoRNA is critical for snoRNA-dependent methylation of ribosomal RNA. Our results reveal that the 5'end processing of box C/D snoRNA defines their distinct pathway of maturation.


Asunto(s)
Núcleo Celular/metabolismo , ARN de Hongos/genética , ARN Nucleolar Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Citoplasma/metabolismo , Metilación , Caperuzas de ARN , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Genes Dev ; 29(8): 849-61, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25877920

RESUMEN

In Saccharomyces cerevisiae, short noncoding RNA (ncRNA) generated by RNA polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3, and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is also generally required for NRD-dependent transcription termination through the action of its C-terminal domain (CTD)-interacting domain (CID). Pcf11 localizes downstream from Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore, mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA, and restricted Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar, as both accumulate RNA:DNA hybrids and display Pol II pausing downstream from NRD terminators. We predict a mechanism by which the exchange of Nrd1 and Pcf11 on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , ADN Helicasas/genética , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Escisión y Poliadenilación de ARNm/genética
12.
Trends Biochem Sci ; 39(7): 319-27, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928762

RESUMEN

Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , Terminación de la Transcripción Genética , Animales , Humanos , Regiones Promotoras Genéticas
13.
RNA ; 20(1): 115-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24249226

RESUMEN

Mature tRNA 3' ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3' endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3' processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3'-end processing of precursors with long 3' trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3' ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.


Asunto(s)
Endorribonucleasas/fisiología , Exorribonucleasas/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma/fisiología , Procesamiento de Término de ARN 3'/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Silenciador del Gen , Redes y Vías Metabólicas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Organismos Modificados Genéticamente , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia/química , Saccharomyces cerevisiae/genética
14.
Mol Cell ; 41(1): 21-32, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21211720

RESUMEN

Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.


Asunto(s)
ADN Helicasas/fisiología , Inestabilidad Genómica , ARN Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Transcripción Genética , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Mol Cell ; 32(2): 247-58, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18951092

RESUMEN

Transcription termination by RNA polymerase II is coupled to transcript 3' end formation. A large cleavage and polyadenylation complex containing the major poly(A) polymerase Pap1 produces mRNA 3' ends, whereas those of nonpolyadenylated snoRNAs in yeast are formed either by endonucleolytic cleavage or by termination, followed by trimming by the nuclear exosome. We show that synthesis of independently transcribed snoRNAs involves default polyadenylation of two classes of precursors derived from termination at a main Nrd1/Nab3-dependent site or a "fail-safe" mRNA-like signal. Poly(A) tails are added by Pap1 to both forms, whereas the alternative poly(A) polymerase Tfr4 adenylates major precursors and processing intermediates to facilitate further polyadenylation by Pap1 and maturation by the exosome/Rrp6. A more important role of Trf4/TRAMP, however, is to enhance Nrd1 association with snoRNA genes. We propose a model in which polyadenylation of pre-snoRNAs is a key event linking their transcription termination, 3' end processing, and degradation.


Asunto(s)
Poliadenilación/fisiología , Precursores del ARN/metabolismo , ARN Nucleolar Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma , Modelos Genéticos , Proteínas Nucleares/metabolismo , Proteínas Asociadas a Pancreatitis , Polinucleotido Adenililtransferasa/fisiología , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
16.
J Mol Biol ; 329(5): 853-7, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12798676

RESUMEN

The human gene encoding a polynucleotide phosphorylase (hPNPase) has been recently identified as strongly up-regulated in two processes leading to irreversible arrest of cell division: progeroid senescence and terminal differentiation. Here, we demonstrate that the hPNPase is localized in mitochondria. Our finding suggests the involvement of mitochondrial RNA metabolism in cellular senescence.


Asunto(s)
Mitocondrias/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Clonación Molecular , Citoplasma/metabolismo , Escherichia coli/genética , Células HeLa , Humanos , Microscopía Fluorescente , Mitocondrias/enzimología , Fragmentos de Péptidos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...