Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sensors (Basel) ; 24(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39338902

RESUMEN

In the evolving field of human-computer interaction (HCI), gesture recognition has emerged as a critical focus, with smart gloves equipped with sensors playing one of the most important roles. Despite the significance of dynamic gesture recognition, most research on data gloves has concentrated on static gestures, with only a small percentage addressing dynamic gestures or both. This study explores the development of a low-cost smart glove prototype designed to capture and classify dynamic hand gestures for game control and presents a prototype of data gloves equipped with five flex sensors, five force sensors, and one inertial measurement unit (IMU) sensor. To classify dynamic gestures, we developed a neural network-based classifier, utilizing a convolutional neural network (CNN) with three two-dimensional convolutional layers and rectified linear unit (ReLU) activation where its accuracy was 90%. The developed glove effectively captures dynamic gestures for game control, achieving high classification accuracy, precision, and recall, as evidenced by the confusion matrix and training metrics. Despite limitations in the number of gestures and participants, the solution offers a cost-effective and accurate approach to gesture recognition, with potential applications in VR/AR environments.


Asunto(s)
Gestos , Aprendizaje Automático , Redes Neurales de la Computación , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos , Mano/fisiología , Interfaz Usuario-Computador
2.
Sci Data ; 11(1): 1051, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333541

RESUMEN

Access to large amounts of data is essential for successful machine learning research. However, there is insufficient data for many applications, as data collection is often challenging and time-consuming. The same applies to automated pain recognition, where algorithms aim to learn associations between a level of pain and behavioural or physiological responses. Although machine learning models have shown promise in improving the current gold standard of pain monitoring (self-reports) only a handful of datasets are freely accessible to researchers. This paper presents the PainMonit Dataset for automated pain detection using physiological data. The dataset consists of two parts, as pain can be perceived differently depending on its underlying cause. (1) Pain was triggered by heat stimuli in an experimental study during which nine physiological sensor modalities (BVP, 2×EDA, skin temperature, ECG, EMG, IBI, HR, respiration) were recorded from 55 healthy subjects. (2) Eight modalities (2×BVP, 2×EDA, EMG, skin temperature, respiration, grip) were recorded from 49 participants to assess their pain during a physiotherapy session.


Asunto(s)
Aprendizaje Automático , Dolor , Humanos , Dimensión del Dolor , Temperatura Cutánea , Algoritmos
3.
Front Med (Lausanne) ; 11: 1444708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188873

RESUMEN

Background: Pneumonia and lung cancer have a mutually reinforcing relationship. Lung cancer patients are prone to contracting COVID-19, with poorer prognoses. Additionally, COVID-19 infection can impact anticancer treatments for lung cancer patients. Developing an early diagnostic system for COVID-19 pneumonia can help improve the prognosis of lung cancer patients with COVID-19 infection. Method: This study proposes a neural network for COVID-19 diagnosis based on non-enhanced CT scans, consisting of two 3D convolutional neural networks (CNN) connected in series to form two diagnostic modules. The first diagnostic module classifies COVID-19 pneumonia patients from other pneumonia patients, while the second diagnostic module distinguishes severe COVID-19 patients from ordinary COVID-19 patients. We also analyzed the correlation between the deep learning features of the two diagnostic modules and various laboratory parameters, including KL-6. Result: The first diagnostic module achieved an accuracy of 0.9669 on the training set and 0.8884 on the test set, while the second diagnostic module achieved an accuracy of 0.9722 on the training set and 0.9184 on the test set. Strong correlation was observed between the deep learning parameters of the second diagnostic module and KL-6. Conclusion: Our neural network can differentiate between COVID-19 pneumonia and other pneumonias on CT images, while also distinguishing between ordinary COVID-19 patients and those with white lung. Patients with white lung in COVID-19 have greater alveolar damage compared to ordinary COVID-19 patients, and our deep learning features can serve as an imaging biomarker.

4.
BMC Womens Health ; 24(1): 425, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060940

RESUMEN

PURPOSE: To build an Mult-Task Learning (MTL) based Artificial Intelligence(AI) model that can simultaneously predict clinical stage, histology, grade and LNM for cervical cancer before surgery. METHODS: This retrospective and prospective cohort study was conducted from January 2001 to March 2014 for the training set and from January 2018 to November 2021 for the validation set at Beijing Chaoyang Hospital, Capital Medical University. Preoperative clinical information of cervical cancer patients was used. An Artificial Neural Network (ANN) algorithm was used to build the MTL-based AI model. Accuracy and weighted F1 scores were calculated as evaluation indicators. The performance of the MTL model was compared with Single-Task Learning (STL) models. Additionally, a Turing test was performed by 20 gynecologists and compared with this AI model. RESULTS: A total of 223 cervical cancer cases were retrospectively enrolled into the training set, and 58 cases were prospectively collected as independent validation set. The accuracy of this cervical cancer AI model constructed with ANN algorithm in predicting stage, histology, grade and LNM were 75%, 95%, 86% and 76%, respectively. And the corresponding weighted F1 score were 70%, 94%, 86%, and 76%, respectively. The average time consumption of AI simultaneously predicting stage, histology, grade and LNM for cervical cancer was 0.01s (95%CI: 0.01-0.01) per 20 patients. The mean time consumption doctor and doctor with AI were 581.1s (95%CI: 300.0-900.0) per 20 patients and 534.8s (95%CI: 255.0-720.0) per 20 patients, respectively. Except for LNM, both the accuracy and F-score of the AI model were significantly better than STL AI, doctors and AI-assisted doctors in predicting stage, grade and histology. (P < 0.05) The time consumption of AI was significantly less than that of doctors' prediction and AI-assisted doctors' results. (P < 0.05 CONCLUSION: A multi-task learning AI model can simultaneously predict stage, histology, grade, and LNM for cervical cancer preoperatively with minimal time consumption. To improve the conditions and use of the beneficiaries, the model should be integrated into routine clinical workflows, offering a decision-support tool for gynecologists. Future studies should focus on refining the model for broader clinical applications, increasing the diversity of the training datasets, and enhancing its adaptability to various clinical settings. Additionally, continuous feedback from clinical practice should be incorporated to ensure the model's accuracy and reliability, ultimately improving personalized patient care and treatment outcomes.


Asunto(s)
Inteligencia Artificial , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/cirugía , Neoplasias del Cuello Uterino/patología , Estudios Retrospectivos , Estudios Prospectivos , Persona de Mediana Edad , Adulto , Estadificación de Neoplasias/métodos , Clasificación del Tumor/métodos , Redes Neurales de la Computación , Algoritmos , Anciano , Metástasis Linfática , Estudios de Cohortes
5.
Front Med (Lausanne) ; 11: 1334865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895187

RESUMEN

Intoduction: Identification of specific metabolome and lipidome profile of patients with primary sclerosing cholangitis (PSC) is crucial for diagnosis, targeted personalized therapy, and more accurate risk stratification. Methods: Nuclear magnetic resonance (NMR) spectroscopy revealed an altered metabolome and lipidome of 33 patients with PSC [24 patients with inflammatory bowel disease (IBD) and 9 patients without IBD] compared with 40 age-, sex-, and body mass index (BMI)-matched healthy controls (HC) as well as 64 patients with IBD and other extraintestinal manifestations (EIM) but without PSC. Results: In particular, higher concentrations of pyruvic acid and several lipoprotein subfractions were measured in PSC in comparison to HC. Of clinical relevance, a specific amino acid and lipid profile was determined in PSC compared with IBD and other EIM. Discussion: These results have the potential to improve diagnosis by differentiating PSC patients from HC and those with IBD and EIM.

7.
Comput Biol Med ; 177: 108628, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810476

RESUMEN

BACKGROUND AND OBJECTIVE: The metabolic syndrome induced by obesity is closely associated with cardiovascular disease, and the prevalence is increasing globally, year by year. Obesity is a risk marker for detecting this disease. However, current research on computer-aided detection of adipose distribution is hampered by the lack of open-source large abdominal adipose datasets. METHODS: In this study, a benchmark Abdominal Adipose Tissue CT Image Dataset (AATCT-IDS) containing 300 subjects is prepared and published. AATCT-IDS publics 13,732 raw CT slices, and the researchers individually annotate the subcutaneous and visceral adipose tissue regions of 3213 of those slices that have the same slice distance to validate denoising methods, train semantic segmentation models, and study radiomics. For different tasks, this paper compares and analyzes the performance of various methods on AATCT-IDS by combining the visualization results and evaluation data. Thus, verify the research potential of this data set in the above three types of tasks. RESULTS: In the comparative study of image denoising, algorithms using a smoothing strategy suppress mixed noise at the expense of image details and obtain better evaluation data. Methods such as BM3D preserve the original image structure better, although the evaluation data are slightly lower. The results show significant differences among them. In the comparative study of semantic segmentation of abdominal adipose tissue, the segmentation results of adipose tissue by each model show different structural characteristics. Among them, BiSeNet obtains segmentation results only slightly inferior to U-Net with the shortest training time and effectively separates small and isolated adipose tissue. In addition, the radiomics study based on AATCT-IDS reveals three adipose distributions in the subject population. CONCLUSION: AATCT-IDS contains the ground truth of adipose tissue regions in abdominal CT slices. This open-source dataset can attract researchers to explore the multi-dimensional characteristics of abdominal adipose tissue and thus help physicians and patients in clinical practice. AATCT-IDS is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/AATTCT-IDS/23807256.


Asunto(s)
Grasa Abdominal , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Grasa Abdominal/diagnóstico por imagen , Masculino , Femenino , Bases de Datos Factuales , Algoritmos , Radiómica
8.
Comput Struct Biotechnol J ; 24: 205-212, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38510535

RESUMEN

The diagnosis of cancer is typically based on histopathological sections or biopsies on glass slides. Artificial intelligence (AI) approaches have greatly enhanced our ability to extract quantitative information from digital histopathology images as a rapid growth in oncology data. Gynecological cancers are major diseases affecting women's health worldwide. They are characterized by high mortality and poor prognosis, underscoring the critical importance of early detection, treatment, and identification of prognostic factors. This review highlights the various clinical applications of AI in gynecological cancers using digitized histopathology slides. Particularly, deep learning models have shown promise in accurately diagnosing, classifying histopathological subtypes, and predicting treatment response and prognosis. Furthermore, the integration with transcriptomics, proteomics, and other multi-omics techniques can provide valuable insights into the molecular features of diseases. Despite the considerable potential of AI, substantial challenges remain. Further improvements in data acquisition and model optimization are required, and the exploration of broader clinical applications, such as the biomarker discovery, need to be explored.

9.
Comput Biol Med ; 171: 108217, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430743

RESUMEN

BACKGROUND: Endometrial cancer is one of the most common tumors in the female reproductive system and is the third most common gynecological malignancy that causes death after ovarian and cervical cancer. Early diagnosis can significantly improve the 5-year survival rate of patients. With the development of artificial intelligence, computer-assisted diagnosis plays an increasingly important role in improving the accuracy and objectivity of diagnosis and reducing the workload of doctors. However, the absence of publicly available image datasets restricts the application of computer-assisted diagnostic techniques. METHODS: In this paper, a publicly available Endometrial Cancer PET/CT Image Dataset for Evaluation of Semantic Segmentation and Detection of Hypermetabolic Regions (ECPC-IDS) are published. Specifically, the segmentation section includes PET and CT images, with 7159 images in multiple formats totally. In order to prove the effectiveness of segmentation on ECPC-IDS, six deep learning semantic segmentation methods are selected to test the image segmentation task. The object detection section also includes PET and CT images, with 3579 images and XML files with annotation information totally. Eight deep learning methods are selected for experiments on the detection task. RESULTS: This study is conduct using deep learning-based semantic segmentation and object detection methods to demonstrate the distinguishability on ECPC-IDS. From a separate perspective, the minimum and maximum values of Dice on PET images are 0.546 and 0.743, respectively. The minimum and maximum values of Dice on CT images are 0.012 and 0.510, respectively. The target detection section's maximum mAP values on PET and CT images are 0.993 and 0.986, respectively. CONCLUSION: As far as we know, this is the first publicly available dataset of endometrial cancer with a large number of multi-modality images. ECPC-IDS can assist researchers in exploring new algorithms to enhance computer-assisted diagnosis, benefiting both clinical doctors and patients. ECPC-IDS is also freely published for non-commercial at: https://figshare.com/articles/dataset/ECPC-IDS/23808258.


Asunto(s)
Neoplasias Endometriales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador/métodos , Semántica , Benchmarking , Neoplasias Endometriales/diagnóstico por imagen
10.
Comput Biol Med ; 173: 108342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522249

RESUMEN

BACKGROUND AND OBJECTIVE: Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets. METHODS: This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods. RESULTS: This study conducts numerous experiments using classical machine learning and deep learning methods, demonstrating the differences in various segmentation and detection methods on the PHE-SICH-CT-IDS. The highest precision achieved in semantic segmentation is 76.31%, while object detection attains a maximum precision of 97.62%. The experimental results on radiomic feature extraction and analysis prove the suitability of PHE-SICH-CT-IDS for evaluating image features and highlight the predictive value of these features for the prognosis of SICH patients. CONCLUSION: To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937.


Asunto(s)
Edema Encefálico , Humanos , Edema Encefálico/diagnóstico por imagen , Benchmarking , Radiómica , Semántica , Edema , Hemorragia Cerebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X
11.
Data Brief ; 53: 110141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38406254

RESUMEN

A benchmark histopathological Hematoxylin and Eosin (H&E) image dataset for Cervical Adenocarcinoma in Situ (CAISHI), containing 2240 histopathological images of Cervical Adenocarcinoma in Situ (AIS), is established to fill the current data gap, of which 1010 are images of normal cervical glands and another 1230 are images of cervical AIS. The sampling method is endoscope biopsy. Pathological sections are obtained by H&E staining from Shengjing Hospital, China Medical University. These images have a magnification of 100 and are captured by the Axio Scope. A1 microscope. The size of the image is 3840 × 2160 pixels, and the format is ".png". The collection of CAISHI is subject to an ethical review by China Medical University with approval number 2022PS841K. These images are analyzed at multiple levels, including classification tasks and image retrieval tasks. A variety of computer vision and machine learning methods are used to evaluate the performance of the data. For classification tasks, a variety of classical machine learning classifiers such as k-means, support vector machines (SVM), and random forests (RF), as well as convolutional neural network classifiers such as Residual Network 50 (ResNet50), Vision Transformer (ViT), Inception version 3 (Inception-V3), and Visual Geometry Group Network 16 (VGG-16), are used. In addition, the Siamese network is used to evaluate few-shot learning tasks. In terms of image retrieval functions, color features, texture features, and deep learning features are extracted, and their performances are tested. CAISHI can help with the early diagnosis and screening of cervical cancer. Researchers can use this dataset to develop new computer-aided diagnostic tools that could improve the accuracy and efficiency of cervical cancer screening and advance the development of automated diagnostic algorithms.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38083212

RESUMEN

The development of information and communication technologies (ICT) changed many aspects of our lives, including cardiovascular research. This area of research is affected by the availability of open databases that can help conduct basic and applied research. In this study, we summarize the current state of knowledge in publicly available signal databases with seismocardiographic (SCG) signals in January 2023. Based on Google search results for the expression "seismocardiography dataset", we have found and described five databases with seismocardiograms, including three databases that contain SCG signals from healthy subjects, one database with data from porcine subjects, and one signal database with data obtained from human patients with valvular heart disease (VHD). All contain additional signals for reference points in the cardiac cycle. The most significant limitations of the described data sets are gender bias toward male subjects, the imbalance between healthy subjects, and subjects with two cardiovascular diseases (VHD and hemorrhage).


Asunto(s)
Enfermedades Cardiovasculares , Procesamiento de Señales Asistido por Computador , Humanos , Masculino , Femenino , Animales , Porcinos , Sexismo , Corazón , Bases de Datos Factuales
13.
Artículo en Inglés | MEDLINE | ID: mdl-38083468

RESUMEN

Signal quality significantly affects the processing, analysis, and interpretation of biomedical signals. There are many procedures for assessing signal quality that use averaged numerical values, thresholding, analysis in the time or frequency domain, or nonlinear approaches. An interesting approach to the assessment of signal quality is using symmetric projection attractor reconstruction (SPAR) analysis, which transforms an entire signal into a two-dimensional plot that reflects the waveform morphology. In this study, we present an application of SPAR to evaluate the quality of seismocardiograms (SCG signals) from the CEBS database, a publicly available seismocardiogram signal database. Visual inspection of symmetric projection attractors suggests that high-quality (clean) seismocardiogram projections resemble six-pointed asterisks (*), and any deviation from this shape suggests the influence of noise and artifacts.Clinical relevance- SPAR analysis enables quick identification of noise and artifacts that can affect the reliability of the diagnosis of cardiovascular diseases based on SCG signals.


Asunto(s)
Enfermedades Cardiovasculares , Procesamiento de Señales Asistido por Computador , Humanos , Reproducibilidad de los Resultados
14.
BMJ Open ; 13(11): e072024, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918930

RESUMEN

INTRODUCTION: Imprecise nutritional recommendations due to a lack of diagnostic test accuracy are a frequent problem for individuals with adverse reactions to foods but no precise diagnosis. Consequently, patients follow very broad and strict elimination diets to avoid uncontrolled symptoms such as diarrhoea and abdominal pain. Dietary limitations and the uncertainty of developing gastrointestinal symptoms after the inadvertent ingestion of food have been demonstrated to reduce the quality of life (QoL) of affected individuals and subsequently might increase the risk of malnutrition and intestinal dysbiosis. This trial aims to investigate the effects of a tailored diet based on the confocal laser endoscopy (CLE) examination result to limit the side effects of unspecific and broad elimination diets and to increase the patient's QoL. METHODS AND ANALYSIS: The study is designed as a prospective, double-blind, monocentric, randomised and controlled trial conducted at the University Hospital of Schleswig-Holstein, Campus Lübeck, Germany. One hundred seventy-two patients with non-IgE-related food allergies and positive CLE results will be randomised to either a tailored diet or a standard fivefold elimination diet. The primary endpoints are the difference between the end and the start of the intervention in health-related QoL and the sum score of the severity of symptoms after 12 weeks. Key secondary endpoints are changes in the severity of symptoms, further QoL measurements, self-assessed state of health and number of days with a pathologically altered stool. Microbiome diversity and metabolome of stool, urine and blood will also be investigated. Safety endpoints are body composition, body mass index and adverse events. ETHICS AND DISSEMINATION: The study protocol was accepted by the ethical committee of the University of Lübeck (AZ: 22-111) on 4 May2022. Results of the study will be published in peer-reviewed journals and presented at scientific meetings. TRIAL REGISTRATION NUMBER: German Clinical Trials Register (DRKS00029323).


Asunto(s)
Aplicaciones Móviles , Calidad de Vida , Humanos , Intolerancia Alimentaria , Dieta de Eliminación , Estudios Prospectivos , Método Doble Ciego , Endoscopía , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
Bioengineering (Basel) ; 10(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38002444

RESUMEN

Type 2 diabetes mellitus (T2D) poses a significant global health challenge and demands effective self-management strategies, including continuous blood glucose monitoring (CGM) and lifestyle adaptations. While CGM offers real-time glucose level assessment, the quest for minimizing trauma and enhancing convenience has spurred the need to explore non-invasive alternatives for monitoring vital signs in patients with T2D. Objective: This systematic review is the first that explores the current literature and critically evaluates the use and reporting of non-invasive wearable devices for monitoring vital signs in patients with T2D. Methods: Employing the PRISMA and PICOS guidelines, we conducted a comprehensive search to incorporate evidence from relevant studies, focusing on randomized controlled trials (RCTs), systematic reviews, and meta-analyses published since 2017. Of the 437 publications identified, seven were selected based on predetermined criteria. Results: The seven studies included in this review used various sensing technologies, such as heart rate monitors, accelerometers, and other wearable devices. Primary health outcomes included blood pressure measurements, heart rate, body fat percentage, and cardiorespiratory endurance. Non-invasive wearable devices demonstrated potential for aiding T2D management, albeit with variations in efficacy across studies. Conclusions: Based on the low number of studies with higher evidence levels (i.e., RCTs) that we were able to find and the significant differences in design between these studies, we conclude that further evidence is required to validate the application, efficacy, and real-world impact of these wearable devices. Emphasizing transparency in bias reporting and conducting in-depth research is crucial for fully understanding the implications and benefits of wearable devices in T2D management.

16.
Comput Biol Med ; 167: 107620, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922604

RESUMEN

In recent years, there is been a growing reliance on image analysis methods to bolster dentistry practices, such as image classification, segmentation and object detection. However, the availability of related benchmark datasets remains limited. Hence, we spent six years to prepare and test a bench Oral Implant Image Dataset (OII-DS) to support the work in this research domain. OII-DS is a benchmark oral image dataset consisting of 3834 oral CT imaging images and 15240 oral implant images. It serves the purpose of object detection and image classification. To demonstrate the validity of the OII-DS, for each function, the most representative algorithms and metrics are selected for testing and evaluation. For object detection, five object detection algorithms are adopted to test and four evaluation criteria are used to assess the detection of each of the five objects. Additionally, mean average precision serves as the evaluation metric for multi-objective detection. For image classification, 13 classifiers are used for testing and evaluating each of the five categories by meeting four evaluation criteria. Experimental results affirm the high quality of our data in OII-DS, rendering it suitable for evaluating object detection and image classification methods. Furthermore, OII-DS is openly available at the URL for non-commercial purpose: https://doi.org/10.6084/m9.figshare.22608790.


Asunto(s)
Algoritmos , Benchmarking , Procesamiento de Imagen Asistido por Computador/métodos
17.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837061

RESUMEN

Multiple attempts to quantify pain objectively using single measures of physiological body responses have been performed in the past, but the variability across participants reduces the usefulness of such methods. Therefore, this study aims to evaluate whether combining multiple autonomic parameters is more appropriate to quantify the perceived pain intensity of healthy subjects (HSs) and chronic back pain patients (CBPPs) during experimental heat pain stimulation. HS and CBPP received different heat pain stimuli adjusted for individual pain tolerance via a CE-certified thermode. Different sensors measured physiological responses. Machine learning models were trained to evaluate performance in distinguishing pain levels and identify key sensors and features for the classification task. The results show that distinguishing between no and severe pain is significantly easier than discriminating lower pain levels. Electrodermal activity is the best marker for distinguishing between low and high pain levels. However, recursive feature elimination showed that an optimal subset of features for all modalities includes characteristics retrieved from several modalities. Moreover, the study's findings indicate that differences in physiological responses to pain in HS and CBPP remain small.


Asunto(s)
Calor , Umbral del Dolor , Humanos , Voluntarios Sanos , Umbral del Dolor/fisiología , Percepción del Dolor/fisiología , Dolor de Espalda
18.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837064

RESUMEN

Machine learning with deep neural networks (DNNs) is widely used for human activity recognition (HAR) to automatically learn features, identify and analyze activities, and to produce a consequential outcome in numerous applications. However, learning robust features requires an enormous number of labeled data. Therefore, implementing a DNN either requires creating a large dataset or needs to use the pre-trained models on different datasets. Multitask learning (MTL) is a machine learning paradigm where a model is trained to perform multiple tasks simultaneously, with the idea that sharing information between tasks can lead to improved performance on each individual task. This paper presents a novel MTL approach that employs combined training for human activities with different temporal scales of atomic and composite activities. Atomic activities are basic, indivisible actions that are readily identifiable and classifiable. Composite activities are complex actions that comprise a sequence or combination of atomic activities. The proposed MTL approach can help in addressing challenges related to recognizing and predicting both atomic and composite activities. It can also help in providing a solution to the data scarcity problem by simultaneously learning multiple related tasks so that knowledge from each task can be reused by the others. The proposed approach offers advantages like improved data efficiency, reduced overfitting due to shared representations, and fast learning through the use of auxiliary information. The proposed approach exploits the similarities and differences between multiple tasks so that these tasks can share the parameter structure, which improves model performance. The paper also figures out which tasks should be learned together and which tasks should be learned separately. If the tasks are properly selected, the shared structure of each task can help it learn more from other tasks.


Asunto(s)
Aprendizaje Profundo , Dispositivos Electrónicos Vestibles , Humanos , Actividades Cotidianas , Redes Neurales de la Computación , Aprendizaje Automático
19.
Comput Biol Med ; 166: 107501, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37742416

RESUMEN

Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31-92.34%, MF1 of 88.21-90.08%, and Cohen's Kappa coefficient k of 0.87-0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.

20.
Comput Biol Med ; 165: 107388, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696178

RESUMEN

Colorectal Cancer (CRC) is currently one of the most common and deadly cancers. CRC is the third most common malignancy and the fourth leading cause of cancer death worldwide. It ranks as the second most frequent cause of cancer-related deaths in the United States and other developed countries. Histopathological images contain sufficient phenotypic information, they play an indispensable role in the diagnosis and treatment of CRC. In order to improve the objectivity and diagnostic efficiency for image analysis of intestinal histopathology, Computer-aided Diagnosis (CAD) methods based on machine learning (ML) are widely applied in image analysis of intestinal histopathology. In this investigation, we conduct a comprehensive study on recent ML-based methods for image analysis of intestinal histopathology. First, we discuss commonly used datasets from basic research studies with knowledge of intestinal histopathology relevant to medicine. Second, we introduce traditional ML methods commonly used in intestinal histopathology, as well as deep learning (DL) methods. Then, we provide a comprehensive review of the recent developments in ML methods for segmentation, classification, detection, and recognition, among others, for histopathological images of the intestine. Finally, the existing methods have been studied, and the application prospects of these methods in this field are given.


Asunto(s)
Medicina , Diagnóstico por Computador , Procesamiento de Imagen Asistido por Computador , Intestinos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...