Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Behav Brain Res ; 468: 115028, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723677

RESUMEN

Early life stress (ELS) increases the risk of depression later in life. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases. However, its involvement in a person's susceptibility to ELS-related depression is unknown. To examine the effects and underlying mechanisms of PDCD4 on ELS vulnerability, we used a "two-hit" stress mouse model: an intraperitoneal injection of lipopolysaccharide (LPS) into neonatal mice was performed on postnatal days 7-9 (P7-P9) and inescapable foot shock (IFS) administration in adolescent was used as a later-life challenge. Our study shows that compared with mice that were only exposed to the LPS or IFS, the "two-hit" stress mice developed more severe depression/anxiety-like behaviors and social disability. We detected the levels of PDCD4 in the hippocampus of adolescent mice and found that they were significantly increased in "two-hit" stress mice. The results of immunohistochemical staining and Sholl analysis showed that the number of microglia in the hippocampus of "two-hit" stress mice significantly increased, with morphological changes, shortened branches, and decreased numbers. However, knocking down PDCD4 can prevent the number and morphological changes of microglia induced by ELS. In addition, we confirmed through the Golgi staining and immunohistochemical staining results that knocking down PDCD4 can ameliorate ELS-induced synaptic plasticity damage. Mechanically, the knockdown of PDCD4 exerts neuroprotective effects, possibly via the mediation of BDNF/AKT/CREB signaling. Combined, these results suggest that PDCD4 may play an important role in the ELS-induced susceptibility to depression and, thus, may become a therapeutic target for depressive disorders.

2.
J Clin Invest ; 134(10)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625739

RESUMEN

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-ß1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.


Asunto(s)
Nefropatías Diabéticas , Fibrosis , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Ratones Noqueados , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Masculino , Riñón/metabolismo , Riñón/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3'
3.
Proc Natl Acad Sci U S A ; 121(17): e2321343121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635639

RESUMEN

Time-resolved X-ray photoelectron spectroscopy (TR-XPS) is used in a simulation study to monitor the excited state intramolecular proton transfer between oxygen and nitrogen atoms in 2-(iminomethyl)phenol. Real-time monitoring of the chemical bond breaking and forming processes is obtained through the time evolution of excited-state chemical shifts. By employing individual atomic probes of the proton donor and acceptor atoms, we predict distinct signals with opposite chemical shifts of the donor and acceptor groups during proton transfer. Details of the ultrafast bond breaking and forming dynamics are revealed by extending the classical electron spectroscopy chemical analysis to real time. Through a comparison with simulated time-resolved photoelectron spectroscopy at the valence level, the distinct advantage of TR-XPS is demonstrated thanks to its atom specificity.

4.
Nat Commun ; 15(1): 2842, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565558

RESUMEN

Antibiotic-induced dysbiosis is a major risk factor for Clostridioides difficile infection (CDI), and fecal microbiota transplantation (FMT) is recommended for treating CDI. However, the underlying mechanisms remain unclear. Here, we show that Tritrichomonas musculis (T.mu), an integral member of the mouse gut commensal microbiota, reduces CDI-induced intestinal damage by inhibiting neutrophil recruitment and IL-1ß secretion, while promoting Th1 cell differentiation and IFN-γ secretion, which in turn enhances goblet cell production and mucin secretion to protect the intestinal mucosa. T.mu can actively metabolize arginine, not only influencing the host's arginine-ornithine metabolic pathway, but also shaping the metabolic environment for the microbial community in the host's intestinal lumen. This leads to a relatively low ornithine state in the intestinal lumen in C. difficile-infected mice. These changes modulate C. difficile's virulence and the host intestinal immune response, and thus collectively alleviating CDI. These findings strongly suggest interactions between an intestinal commensal eukaryote, a pathogenic bacterium, and the host immune system via inter-related arginine-ornithine metabolism in the regulation of pathogenesis and provide further insights for treating CDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Arginina , Ornitina , Intestinos/microbiología , Trasplante de Microbiota Fecal , Infecciones por Clostridium/terapia , Infecciones por Clostridium/microbiología
5.
Oncol Lett ; 27(6): 269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38686356

RESUMEN

Human epidermal growth factor receptor 2 (HER2)+ breast cancer is characterized by high malignancy and poor prognosis. Long non-coding (lnc)RNAs are crucial in breast cancer progression and prognosis, especially in tumor-associated immune processes. The present study aimed to elucidate novel lncRNAs related to immune function that could serve as biomarkers for both diagnosis and prognosis of this cancer subtype. Using data from The Cancer Genome Atlas and The Immunology Database and Analysis Portal, correlation analysis was performed to identify differentially expressed lncRNAs and immune-related genes. Through receiver operating characteristic analysis, the diagnostic value of specific lncRNAs was identified and evaluated, with a focus on their capacity to distinguish between cancerous and non-cancerous states. The present research revealed 22 differentially expressed lncRNAs and 23 differentially expressed immune-related genes, with 19 immune-related lncRNAs. A total of 13 of these lncRNAs demonstrated diagnostic relevance. In particular, it was demonstrated that the expression of lncRNA CTC-537E7.2 was significantly correlated with patient survival, suggesting its potential as a prognostic marker. Additionally, the expression of lncRNA CTC-537E7.2 was significantly correlated with clinical parameters, such as hormone receptor status and patient demographics. Moreover, it exhibited associations with four distinct immune cell types and demonstrated involvement in the Janus kinase-signal transducer and activator of transcription pathway. Further assessment by in situ hybridization confirmed the increased expression of lncRNA CTC-537E7.2 in samples from HER2+ patients, reinforcing its significance. In summary, the present study uncovered a novel prognostic biomarker for HER2+ breast cancer, thereby laying the groundwork for investigating the underlying molecular mechanisms driving the development of this subtype of breast cancer.

6.
Int J Antimicrob Agents ; 63(6): 107158, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38537722

RESUMEN

Rifampicin is the most powerful first-line antibiotic for tuberculosis, which is caused by Mycobacterium tuberculosis. Although accumulating evidence from sequencing data of clinical M. tuberculosis isolates suggested that mutations in the rifampicin-resistance-determining region (RRDR) are strongly associated with rifampicin resistance, the comprehensive characterisation of RRDR polymorphisms that confer this resistance remains challenging. By incorporating I-SceI sites for I-SceI-based integrant removal and utilizing an L5 swap strategy, we efficiently replaced the integrated plasmid with alternative alleles, making mass allelic exchange feasible in mycobacteria. Using this method to establish a fitness-related gain-of function screen, we generated a mutant library that included all single-amino-acid mutations in the RRDR, and identified the important positions corresponding to some well-known rifampicin-resistance mutations (Q513, D516, S522, H525, R529, S531). We also detected a novel two-point mutation located in the RRDR confers a fitness advantage to M. smegmatis in the presence or absence of rifampicin. Our method provides a comprehensive insight into the growth phenotypes of RRDR mutants and should facilitate the development of anti-tuberculosis drugs.

7.
Plast Reconstr Surg ; 153(4): 928-932, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546363

RESUMEN

SUMMARY: Total facial deformities always lead to psychological and functional consequences, making plastic and reconstructive surgery a great challenge. The skin of the anterior chest area is matched in thickness, texture, and color to the head and face. The purpose of this article was to discuss and evaluate reconstructive surgeons' experiences with obtaining a monoblock flap from the anterior thoracic area for entire face reconstruction using flap prefabrication, soft-tissue expansion, and facial plastic surgery following skin flap transplantation. Two patients underwent prefabricated expanded anterior thoracic flap reconstructions for total facial deformities; data collection included face defect size, flap type, the shape of the expander, expansion time, and complications. All the face flaps that were transplanted survived without major complications. It is concluded that using a prefabricated expanded flap to reconstruct an entire facial soft-tissue defect can provide a high degree of matching, a wide enough covering area, and a thin enough skin thickness to cover the face. Autologous flap grafting is easy to implement and has a high application value.


Asunto(s)
Procedimientos de Cirugía Plástica , Trasplantes , Humanos , Colgajos Quirúrgicos , Trasplante de Piel , Expansión de Tejido
9.
J Chem Theory Comput ; 20(7): 2711-2718, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38536965

RESUMEN

We develop and implement an exact conical intersection nonadiabatic wave packet dynamics method that combines the local diabatic representation, Strang splitting for the total molecular propagator, and discrete variable representation with uniform grids. By employing the local diabatic representation, this method captures all nonadiabatic effects, including nonadiabatic transitions, electronic coherences, and geometric phase. Moreover, it is free of singularities in the first and second derivative couplings and does not require the electronic wave function to be continuous with respect to the nuclear coordinates. We further show that in contrast to the adiabatic representation, the split-operator method can be directly applied to the full molecular propagator with the locally diabatic ansatz. The Fourier series, employed as the primitive nuclear basis functions, is universal and can be applied to all types of reactive coordinates. The combination of local diabatic representation, Strang splitting, and Fourier basis allows numerically exact modeling of conical intersection quantum dynamics directly with adiabatic electronic states that can be obtained from standard electronic structure computations.

10.
Environ Pollut ; 347: 123741, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458516

RESUMEN

Previous studies have indicated adverse health effects of exposure to polycyclic aromatic hydrocarbons (PAHs), but evidence on the association between PAH exposure and immunity is scarce and its underlying mechanism is largely unknown. This study assessed human exposure to PAHs by determining the concentrations of PAHs in serum and their metabolites in paired urine. The oxidative stress and inflammation levels were evaluated by urinary DNA damage biomarker 8-hydroxydeoxyguanosine, white blood cell counts and C-reaction protein. We investigated the relationship between PAH exposure and seven immunological components, and explored the indirect roles of oxidative stress and inflammation by mediation and moderation analysis. Multivariate regression analysis revealed that 1-hydroxynaphthalene and 2-hydroxyfluorene were negatively associated with immunoglobulin A, and 3-hydroxyphenanthrene was negatively correlated with complement component 3. Restricted cubic spline analysis demonstrated nonlinear relationships between some individual PAHs or their metabolites with immunological components. Bayesian kernel machine regression and quantile g-computation revealed significant associations of higher PAH exposure with decreased immunoglobulin G and kappa light chain levels. Phenanthrene was the compound that contributed the most to reduced immunoglobulin G. Mediation analysis demonstrated significant indirect effects of 8-hydroxydeoxyguanosine and white blood cell counts on the association between higher PAH exposure and decreased immunological components. Moderation analysis revealed that PAH exposure and decreased immunological components are significantly associated with higher levels of C-reaction protein and white blood cell counts. The results demonstrated significant immunosuppression of PAH exposure and highlighted the indirect roles of oxidative stress and inflammation. Interventions to reduce systemic inflammation may mitigate the adverse immune effects of PAH exposure.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Teorema de Bayes , Inflamación/inducido químicamente , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Estrés Oxidativo , Terapia de Inmunosupresión , Inmunoglobulina G
11.
Heart Lung ; 65: 19-30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38377628

RESUMEN

BACKGROUND: Tuberculosis (TB) represents a significant global health concern, being the leading cause of mortality from a single infectious agent worldwide. The investigation of TB incidence and epidemiological trends is critical for evaluating the effectiveness of control strategies and identifying ongoing challenges. OBJECTIVES: This study presents the trend in TB incidence across 204 countries and regions over a 30-year period. METHODS: The study utilises data sourced from the Global Burden of Disease (GBD) database. The age cohort model and gender subgroup analysis were employed to estimate the net drift (overall annual percentage change), local drift (age annual percentage change), longitudinal age curve (expected age ratio), and cycle and cohort effect (relative risk of cycle and birth cohort) of TB incidence from 1990 to 2019. This approach facilitates the examination and differentiation of age, period, and cohort effects in TB incidence trends, potentially identifying disparities in TB prevention across different countries. RESULTS: Over the past three decades, a general downward trend in TB incidence has been observed in most countries. However, in 15 of the 204 countries, the overall incidence rate is still on the rise (net drift ≥0.0 %) or stagnant decline (≥-0.5 %). From 1990 to 2019, the net drift of tuberculosis mortality ranged from -2.2 % [95 % confidence interval (CI): -2.33, -2.05] in high Socio-demographic Index (SDI) countries to -1.7 % [95 % CI: -1.81, -1.62] in low SDI countries. In some below-average SDI countries,men in the birth cohort are at a disadvantage and at risk of deterioration, necessitating comprehensive TB prevention and treatment. CONCLUSIONS: While the global incidence of TB has declined, adverse period and cohort effects have been identified in numerous countries, raising questions about the adequacy of TB healthcare provision across all age groups. Furthermore, this study reveals gender disparities in TB incidence.


Asunto(s)
Carga Global de Enfermedades , Tuberculosis , Masculino , Humanos , Incidencia , Salud Global , Tuberculosis/epidemiología , Estudios de Cohortes
12.
J Nanobiotechnology ; 22(1): 75, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408974

RESUMEN

The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.


Asunto(s)
Escherichia coli O157 , Nanopartículas , Animales , Ratones , ADN Complementario , ADN , Escherichia coli O157/genética , Microbiología de Alimentos
13.
Small ; : e2310014, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193262

RESUMEN

Here, a multiplex surface-enhanced Raman scattering (SERS)-immunochromatography (ICA) platform is presented using a graphene oxide (GO)-based film-like magnetic tag (GFe-DAu-D/M) that effectively captures and detects multiple bacteria in complex specimens. The 2D GFe-DAu-D/M tag with universal bacterial capture ability is fabricated through the layer-by-layer assembly of one layer of small Fe3 O4 nanoparticles (NPs) and two layers of 30 nm AuNPs with a 0.5 nm built-in nanogap on monolayer GO nanosheets followed by co-modification with 4-mercaptophenylboronic acid (MPBA) and 5,5'-dithiobis-(2-nitrobenzoic acid).The GFe-DAu-D/M enabled the rapid enrichment of multiple bacteria by MPBA and quantitative analysis of target bacteria on test lines by specific antibodies, thus achieving multiple signal amplification of magnetic enrichment effect and multilayer dense hotspots and eliminating matrix interference in real-world applications. The developed technology can directly and simultaneously diagnose three major pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhimurium) with detection limits down to the level of 10 cells mL-1 . The good performance of the proposed method in the detection of real urinary tract infection specimens is also demonstrated, suggesting the great potential of the GFe-DAu-D/M-ICA platform for the highly sensitive monitoring of bacterial infections or contamination.

14.
Opt Express ; 32(1): 526-536, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175080

RESUMEN

Recently, the emergence of transverse orbital angular momentum (OAM) as a novel characteristic of light has captured substantial attention, and the significance of adjustable OAM orientation has been underscored due to its pivotal role in the interaction between light and matter. In this work, we introduce a novel approach to manipulate the orientation of photonic OAM at subwavelength scales, leveraging spatiotemporal coupling. By tightly focusing a wavepacket containing dual spatiotemporal vortices and a spatial vortex through a high numerical aperture lens, the emergence of intricate coupling phenomena leads to entangled and intricately twisted vortex tunnels. As a consequence, the orientation of spatial OAM deviates from the conventional light axis. Through theoretical scrutiny, we unveil that the orientation of photonic OAM within the focal field is contingent upon the signs of the topological charges in both spatiotemporal and spatial domains. Additionally, the absolute values of these charges govern the precise orientation of OAM within their respective quadrants. Moreover, augmenting the pulse width of the incident light engenders a more pronounced deflection angle of photonic OAM. By astutely manipulating these physical parameters, unparalleled control over the spatial orientation of OAM becomes achievable. The augmented optical degrees of freedom introduced by this study hold considerable potential across diverse domains, including optical tweezers, spin-orbit angular momentum coupling, and quantum communication.

15.
Int J Nanomedicine ; 19: 389-401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250194

RESUMEN

Introduction: Ultrasensitive bacterial detection methods are crucial to ensuring accurate diagnosis and effective clinical monitoring, given the significant threat bacterial infections pose to human health. The aim of this study is to develop a biosensor with capabilities for broad-spectrum bacterial detection, rapid processing, and cost-effectiveness. Methods: A magnetically-assisted SERS biosensor was designed, employing wheat germ agglutinin (WGA) for broad-spectrum recognition and antibodies for specific capture. Gold nanostars (AuNSs) were sequentially modified with the Raman reporter molecules and WGA, creating a versatile SERS tag with high affinity for a diverse range of bacteria. Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) antibody-modified Fe3O4 magnetic gold nanoparticles (MGNPs) served as the capture probes. Target bacteria were captured by MGNPs and combined with SERS tags, forming a "sandwich" composite structure for bacterial detection. Results: AuNSs, with a core size of 65 nm, exhibited excellent storage stability (RSD=5.6%) and demonstrated superior SERS enhancement compared to colloidal gold nanoparticles. Efficient binding of S. aureus and P. aeruginosa to MGNPs resulted in capture efficiencies of 89.13% and 85.31%, respectively. Under optimized conditions, the developed assay achieved a limit of detection (LOD) of 7 CFU/mL for S. aureus and 5 CFU/mL for P. aeruginosa. The bacterial concentration (10-106 CFU/mL) showed a strong linear correlation with the SERS intensity at 1331 cm-1. Additionally, high recoveries (84.8% - 118.0%) and low RSD (6.21% - 11.42%) were observed in spiked human urine samples. Conclusion: This study introduces a simple and innovative magnetically-assisted SERS biosensor for the sensitive and quantitative detection of S. aureus or P. aeruginosa, utilizing WGA and antibodies. The developed biosensor enhances the capabilities of the "sandwich" type SERS biosensor, offering a novel and effective platform for accurate and timely clinical diagnosis of bacterial infections.


Asunto(s)
Nanopartículas del Metal , Infecciones Estafilocócicas , Humanos , Oro , Staphylococcus aureus , Bacterias , Anticuerpos
16.
Cell Death Dis ; 15(1): 15, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182569

RESUMEN

Adenocarcinoma of the esophagogastric junction (AEG) is a type of tumor that arises at the anatomical junction of the esophagus and stomach. Although AEG is commonly classified as a subtype of gastric adenocarcinoma (GAC), the tumor microenvironment (TME) of AEG remains poorly understood. To address this issue, we conducted single-cell RNA sequencing (scRNA-seq) on tumor and adjacent normal tissues from four AEG patients and performed integrated analysis with publicly available GAC single-cell datasets. Our study for the first time comprehensively deciphered the TME landscape of AEG, where heterogeneous AEG malignant cells were identified with diverse biological functions and intrinsic malignant nature. We also depicted transcriptional signatures and T cell receptor (TCR) repertoires for T cell subclusters, revealing enhanced exhaustion and reduced clone expansion along the developmental trajectory of tumor-infiltrating T cells within AEG. Notably, we observed prominent enrichment of tumorigenic cancer-associated fibroblasts (CAFs) in the AEG TME compared to GAC. These CAFs played a critical regulatory role in the intercellular communication network with other cell types in the AEG TME. Furthermore, we identified that the accumulation of CAFs in AEG might be induced by malignant cells through FGF-FGFR axes. Our findings provide a comprehensive depiction of the AEG TME, which underlies potential therapeutic targets for AEG patient treatment.


Asunto(s)
Adenocarcinoma , Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Neoplasias Gástricas/genética , Unión Esofagogástrica , Análisis de la Célula Individual , Microambiente Tumoral
17.
Heliyon ; 10(2): e24399, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293370

RESUMEN

Objectives: Clinicians often face the challenge of differentially diagnosing febrile patients who are suspected of infectious diseases, since the clinical manifestations of infection and cancer may overlap. A single test that can detect both pathogens and tumor could provide timely and accurate diagnostic clues to aid the treatment and management of these patients. Methods: We enrolled eight patients to evaluate the utility of metagenomic Next-Generation Sequencing for simultaneously detecting pathogens and neoplasms using body fluids and tissue samples. Patients were selected by the following criteria: 1) Tumor was not considered upon hospitalization, but mNGS testing indicated neoplasm; 2) Tumor was not excluded, but microbial infection was primarily suspected according to initial clinical assessment. Results: We detected potential pathogens in five patients, three of whom had progressed into critical infections. Moreover, abnormal chromosomal copy numbers were identified in all patients that indicated presence of neoplasms, which were pathologically confirmed. Conclusions: Although copy number variations do not render a definitive cancer diagnosis, it can prompt clinicians to conduct more focused diagnostic testing for cancer, potentially saving time and cost. As a result, integrating copy number analysis with pathogen detection in mNGS may help establish rapid and accurate diagnosis for febrile patients.

18.
J Psychiatr Res ; 170: 262-276, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181539

RESUMEN

Early life events are major risk factors for the onset of depression and have long-term effects on the neurobiological changes and behavioral development of rodents. However, little is known about the specific mechanisms of early life adversity in the susceptibility to subsequent stress exposure in adolescence. This study characterized the effect of maternal separation (MS), an animal model of early life adversity, on the behavioral responses to restraint stress in mice during adolescence and investigated the molecular mechanism underlying behavioral vulnerability to chronic stress induced by MS. Our results showed that MS exposure could further reinforce the depressive vulnerability to restraint stress in adolescent mice. In addition, miR-34c-5p expression was obviously up-regulated in the hippocampi of MS mice at postnatal day (P) 14 and P42. Further, synaptotagmin-1 (SYT1) was deemed as a target gene candidate of miR-34c-5p on the basis of dual luciferase assay. It was found that the downregulation of miR-34c-5p expression in the hippocampi of MS mice could ameliorate dysfunction of synaptic plasticity by targeting molecule SYT1, effects which were accompanied by alleviation of depressive and anxious behaviors in these mice. The results demonstrated that the miR-34c-5p/SYT1 pathway was involved in the susceptibility to depression induced by MS via regulating neuroplasticity in the hippocampi of mice.


Asunto(s)
Experiencias Adversas de la Infancia , MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Depresión/etiología , Privación Materna , Hipocampo/metabolismo , Plasticidad Neuronal
19.
Lab Invest ; 104(2): 100310, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135155

RESUMEN

Diagnostic methods for Helicobacter pylori infection include, but are not limited to, urea breath test, serum antibody test, fecal antigen test, and rapid urease test. However, these methods suffer drawbacks such as low accuracy, high false-positive rate, complex operations, invasiveness, etc. Therefore, there is a need to develop simple, rapid, and noninvasive detection methods for H. pylori diagnosis. In this study, we propose a novel technique for accurately detecting H. pylori infection through machine learning analysis of surface-enhanced Raman scattering (SERS) spectra of gastric fluid samples that were noninvasively collected from human stomachs via the string test. One hundred participants were recruited to collect gastric fluid samples noninvasively. Therefore, 12,000 SERS spectra (n = 120 spectra/participant) were generated for building machine learning models evaluated by standard metrics in model performance assessment. According to the results, the Light Gradient Boosting Machine algorithm exhibited the best prediction capacity and time efficiency (accuracy = 99.54% and time = 2.61 seconds). Moreover, the Light Gradient Boosting Machine model was blindly tested on 2,000 SERS spectra collected from 100 participants with unknown H. pylori infection status, achieving a prediction accuracy of 82.15% compared with qPCR results. This novel technique is simple and rapid in diagnosing H. pylori infection, potentially complementing current H. pylori diagnostic methods.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/diagnóstico , Espectrometría Raman , Estómago , Ureasa/análisis , Sensibilidad y Especificidad
20.
Nucleic Acids Res ; 52(6): 2886-2903, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38142446

RESUMEN

Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.


Asunto(s)
Histonas , Shewanella , Acetilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Glutamina/genética , Histonas/metabolismo , Homeostasis , Procesamiento Proteico-Postraduccional , Shewanella/genética , Shewanella/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA