Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 8437-8461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170101

RESUMEN

Data published in 2020 by the International Agency for Research on Cancer (IARC) of the World Health Organization show that breast cancer (BC) has become the most common cancer globally, affecting more than 2 million women each year. The complex tumor microenvironment, drug resistance, metastasis, and poor prognosis constitute the primary challenges in the current diagnosis and treatment of BC. Magnetic iron oxide nanoparticles (MIONPs) have emerged as a promising nanoplatform for diagnostic tumor imaging as well as therapeutic drug-targeted delivery due to their unique physicochemical properties. The extensive surface engineering has given rise to multifunctionalized MIONPs. In this review, the latest advancements in surface modification strategies of MIONPs over the past five years are summarized and categorized as constrast agents and drug delivery platforms. Additionally, the remaining challenges and future prospects of MIONPs-based targeted delivery are discussed.


Asunto(s)
Neoplasias de la Mama , Nanopartículas Magnéticas de Óxido de Hierro , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Nanopartículas Magnéticas de Óxido de Hierro/química , Sistemas de Liberación de Medicamentos/métodos , Propiedades de Superficie , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Animales , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Microambiente Tumoral/efectos de los fármacos
2.
Plant J ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39176434

RESUMEN

Leaf size is a crucial agronomic trait directly affecting crop yield, which is mainly determined by coordinated cell proliferation, growth, and differentiation. Although endoreduplication is known to be correlated with the onset of cell differentiation and leaf size, the underlying molecular mechanisms are largely unclear. The DnaJ-like zinc finger domain-containing protein ORANGE (OR) was initially demonstrated to confer the massive accumulation of carotenoids in cauliflower curds. However, the cauliflower or mutant also possesses other phenotypes such as smaller curds, smaller leaves with elongated petioles, and delayed flowering. Here, we demonstrated that OR physically interacts with the transcription factor TCP7, which promotes endoreduplication by inducing the expression of the cell cycle gene CYCLIN D 1;1 (CYCD1;1). Overexpression of OR resulted in smaller rosette leaves, whereas the OR-silencing plants had larger rosette leaves than wild-type plants. Our microscopic observations and flow cytometry analysis revealed that the variation in leaf size was a result of different endoreduplication levels. Genetic analyses showed that OR functions antagonistically with TCP7 in regulating the endoreduplication levels in leaf cells. While the expression of OR is induced by TCP7, OR represses the transactivation activity of TCP7 by affecting its binding capability to the TCP-binding motif in the promoter region of CYCD1;1. Through this interaction, OR negatively regulates the expression of CYCD1;1 and reduces the nuclear ploidy level in rosette leaf cells. Our findings provide new insights into the regulatory network of leaf size and also reveal a regulatory circuit controlling endoreduplication in leaf cells.

3.
Int J Biol Macromol ; 279(Pt 2): 135154, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214212

RESUMEN

Silver nanoparticles (AgNPs) have drawn a lot of attention from a variety of fields, particularly the biological and biomedical sciences. As a result, it is acknowledged that AgNPs' direct interactions with macromolecules such as DNA, proteins, and enzymes are essential for both therapeutic and nanotoxicological applications. Enzymes as important catalysts may interact with AgNP surfaces in a variety of ways. Therefore, mechanistic investigation into the molecular effects of AgNPs on enzyme conformation and function is necessary for a comprehensive assessment of their interactions. In this overview, we aimed to overview the various strategies for producing AgNPs. We then discussed the enzyme activity inhibition (EAI) mechanism by nanostructured particles, followed by an in-depth survey of the interaction of AgNPs with different enzymes. Furthermore, various parameters influencing the interaction of NPs and enzymes, as well as the antibacterial and anticancer effects of AgNPs in the context of the enzyme inhibitors, were discussed. In summary, useful information regarding the biological safety and possible therapeutic applications of AgNPs-enzyme conjugates may be obtained from this review.

4.
Plants (Basel) ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592746

RESUMEN

Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.

5.
ACS Nano ; 17(17): 17527-17535, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37578399

RESUMEN

Li metal is regarded as the most promising battery anode to boost energy density. However, being faced with the hostile compatibility between the Li anode and traditional carbonate electrolyte, its large-scale industrialization has been in a distressing circumstance due to severe dendrite growth caused by unsatisfying solid electrolyte interphase (SEI). With this regard, accurate control over the composition of the SEI is urgently desired to tackle the electrochemical and mechanical instability at the electrolyte/anode interface. Herein, we report a rationally designed fluorinated carbamate-based electrolyte employing LiNO3 as one of the main salts to induce the preferable anion decomposition to achieve a homogeneous and inorganic (LiF, Li3N, Li2O)-rich SEI. Thus, this electrolyte achieves a high Coulombic efficiency of 99% of the Li metal anode, a stable cycling over 1000 h for Li|Li symmetric cells, more than 100 cycles in 40-µm-thin Li|high-loading-NCM811 full batteries, and >50 cycles in Cu|LiFePO4 pouch cells, which is a promising electrolyte for highly reversible Li metal batteries.

6.
Chin J Integr Med ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37612478

RESUMEN

OBJECTIVE: To provide comprehensive evidence for the anti-cancer cachexia effect of Jianpi Decoction (JP) and to explore its mechanism of anti-cancer cachexia. METHODS: A mouse model of colon cancer (CT26)-induced cancer cachexia (CC) was used to investigate the anti-CC effect of JP combined with medroxyprogesterone acetate (MPA). Thirty-six mice were equally divided into 6 groups: normal control, CC, MPA (100 mg•kg-1•d-1), MPA + low-dose (20 mg•kg-1•d-1) JP (L-JP), MPA + medium-dose (30 mg•kg-1•d-1) JP (M-JP), and MPA + high-dose (40 mg•kg-1•d-1) JP (H-JP) groups. After successful modeling, the mice were administered by gavage for 11 d. The body weight and tumor volume were measured and recorded every 2 d starting on the 8th day after implantation. The liver, heart, spleen, lung, kidney, tumor and gastrocnemius muscle of mice were collected and weighed. The pathological changes of the tumor was observed, and the cross-sectional area of the gastrocnemius muscle was calculated. The protein expressions of STAT3 and E3 ubiquitinase in the gastrocnemius muscle were measured by Western blot. In addition, an in vitro C2C12 myotube formation model was established to investigate the role of JP in hindering dexamethasone-induced muscle atrophy. In vitro experiments were divided into control, model, and JP serum groups. After 2-d administration, microscopic photographs were taken and myotube diameters were calculated. Western blot was performed to measure the protein expressions of STAT3 and E3 ubiquitinase. RESULTS: JP combined with MPA restored tumor-induced weight loss (P<0.05, vs. CC) and muscle fiber size (P<0.01, vs. CC). Mechanistically, JP reduced the expression of atrophy-related proteins MuRF1 and MAFbx in tumor-induced muscle atrophy in vivo (P<0.05, vs. CC). In addition, JP reduced the expression of atrophy-related proteins MuRF1 and MAFbx and p-STAT3 phosphorylation (P<0.05 or P<0.01 vs. model group) in C2C12 myotubes treated with dexamethasone in vitro. CONCLUSIONS: Administration of JP combined with MPA restores tumor-induced cachexia conditions. In addition, the profound effect of JP combined with MPA on tumor-induced cachexia may be due to its inhibition of muscle proteolysis (E3 ubiquitinase system).

7.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511150

RESUMEN

Most broccoli cultivars or accessions exhibit green buds under appropriate growth conditions, which turn purple at cold temperatures. However, certain cultivars consistently maintain green buds both during normal growth and at cold temperatures. In this study, we used BSA-seq (bulked segregation analysis-sequencing), along with fine mapping and transcriptome analysis to identify a candidate gene (flavonoid 3'-hydroxylase, F3'H) responsible for reducing anthocyanin accumulation in the mutant GS and HX-16 broccoli (Brassica oleracea L. var. italica), which could retain green buds even at low temperatures. A 43-bp deletion was detected in the coding sequence (CDS) of the F3'H gene in HX-16 and the mutant GS, which significantly decreased F3'H expression and the accumulation of cyanidin and delphinidin in the mutant GS. Furthermore, the expression of F3'H was upregulated at low temperatures in the wild line PS. Our results demonstrated the efficacy of utilizing the 43-bp InDel (Insertion-Deletion) in predicting whether buds in B. oleracea L. will turn purple or remain green at cold temperatures across forty-two germplasm materials. This study provides critical genetic and molecular insights for the molecular breeding of B. oleracea and sheds light on the molecular mechanisms underlying the effect of low temperatures on bud color in broccoli.


Asunto(s)
Antocianinas , Brassica , Antocianinas/metabolismo , Brassica/genética , Brassica/metabolismo , Frío , Temperatura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
J Agric Food Chem ; 71(16): 6499-6510, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37061924

RESUMEN

Alternaria brassicicola (Ab) can cause a major yield and quality-limiting disease of Brassica oleracea called black spot, and the genetic resources conferring complete resistance against Ab have not been identified to date. Here, comparative transcriptome and targeted metabolome analysis were performed utilizing a newly identified resistant (R) line and a broccoli susceptible (S) line at 6, 24, and 72 h post-inoculation (hpi). Kyoto encyclopedia of genes and genomes pathway enrichment and the weighted gene co-expression network analyses showed that the phenylpropanoid pathway regulates the resistance to Ab in broccoli. One metabolite, cinnamic acid, was significantly upregulated in the Ab_inoculated R line compared with the mock treatment but no significant difference in the S line, indicating that the cinnamic acid may cause the resistance difference between R and S lines. Our results also revealed that three indolic glucosinolates of I3G, 4MI3G, and 1MI3G were significantly increased in the Ab_inoculated R line compared with the mock treatment, and some related genes were differentially expressed between the R and S lines. These results provided new insights into the mechanism of Ab defense in B. oleracea and have laid a theoretical foundation for effectively utilizing resistant germplasm resources in broccoli breeding.


Asunto(s)
Brassica , Brassica/genética , Glucosinolatos , Metaboloma , Fitomejoramiento , Transcriptoma
9.
Front Plant Sci ; 13: 1021669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311069

RESUMEN

Brassica oleracea is an economically important species, including seven cultivated variants. Agrobacterium-mediated transformation of B. oleracea crops, mainly via hypocotyl and cotyledon, has been achieved in the past. However, previously established transformation methods showed low efficiency, severe genotype limitation and a prolonged period for transformants acquisition, greatly restricting its application in functional genomic studies and crop improvement. In this study, we have compared the shoot regeneration and genetic transformation efficiency of hypocotyl, cotyledon petiole and curd peduncle explants from twelve genotypes of cauliflower and broccoli. Finally, an Agrobacterium-mediated transformation method using curd peduncle as explant was established, which is rapid, efficient, and amenable to high-throughput transformation and genome editing. The average genetic transformation efficiency of this method is stable up to 11.87% and was successfully implemented in twelve different genotypes of cauliflower and broccoli and other B. oleracea crops with low genotype dependence. Peduncle explants were found to contain abundant cambial cells with a strong cell division and shoot regeneration ability, which might be why this method achieved stable and high genetic transformation efficiency with almost no genotype dependence.

10.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012543

RESUMEN

Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.


Asunto(s)
Brassica , Plasmodiophorida , Brassica/genética , Productos Agrícolas , Fitomejoramiento , Enfermedades de las Plantas/genética , Plasmodiophorida/fisiología
11.
Front Plant Sci ; 12: 742553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938304

RESUMEN

Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.

12.
Front Plant Sci ; 12: 667757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354719

RESUMEN

Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.

13.
Front Plant Sci ; 12: 655254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149754

RESUMEN

Broccoli (Brassica oleracea var. italica) is one of the most important and nutritious vegetables widely cultivated in China. In the recent four decades, several improved varieties were bred and developed by Chinese breeders. However, the efforts for improvement of broccoli are hindered by limited information of genetic diversity and genetic relatedness contained within the available germplasms. This study evaluated the genetic diversity, genetic relationship, population structure, and fingerprinting of 372 accessions of broccoli representing most of the variability of broccoli in China. Millions of SNPs were identified by whole-genome sequencing of 23 representative broccoli genotypes. Through several stringent selection criteria, a total of 1,167 SNPs were selected to characterize genetic diversity and population structure. Of these markers, 1,067 SNPs were genotyped by target sequencing (GBTS), and 100 SNPs were genotyped by kompetitive allele specific PCR (KASP) assay. The average polymorphism information content (PIC) and expected heterozygosity (gene diversity) values were 0.33 and 0.42, respectively. Diversity analysis revealed the prevalence of low to moderate genetic diversity in the broccoli accessions indicating a narrow genetic base. Phylogenetic and principal component analyses revealed that the 372 accessions could be clustered into two main groups but with weak groupings. STRUCTURE analysis also suggested the presence of two subpopulations with weak genetic structure. Analysis of molecular variance (AMOVA) identified 13% variance among populations and 87% within populations revealing very low population differentiation, which could be attributed to massive gene flow and the reproductive biology of the crop. Based on high resolving power, a set of 28 KASP markers was chosen for DNA fingerprinting of the broccoli accessions for seed authentication and varietal identification. To the best of our knowledge, this is the first comprehensive study to measure diversity and population structure of a large collection of broccoli in China and also the first application of GBTS and KASP techniques in genetic characterization of broccoli. This work broadens the understanding of diversity, phylogeny, and population structure of a large collection of broccoli, which may enhance future breeding efforts to achieve higher productivity.

14.
BMC Plant Biol ; 20(1): 177, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321422

RESUMEN

BACKGROUND: Curd architecture is one of the most important characters determining the curd morphology of cauliflower. However, the genetic mechanism dissection of this complex trait at molecular level is lacking. Genes/QTLs responsible for the morphological differences between present-day loose-curd and compact-curd cauliflower haven't been well revealed. RESULTS: Herein, by using a common compact-curd parent and two loose-curd parents, we developed two double haploid (DH) populations including 122 and 79 lines, respectively. For each population, we decomposed the curd architecture concept into four parameters (basal diameter, stalk length, stalk angle and curd solidity), and collected corresponding phenotypic data for each parameter across two environments. The Kosambi function and composite interval mapping algorithm were conducted to construct the linkage map and analyze the QTLs associated with curd architecture parameters. A total of 20 QTLs were detected with the minimum likelihood of odd (LOD) values ranging from 2.61 to 8.38 and the percentage of the phenotypic variance explained by each QTL (PVE) varying between 7.69 and 25.10%. Of these, two QTLs controlling stalk length (qSL.C6-1, qSL.C6-2) and two QTLs controlling curd solidity (qCS.C6-1 and qCS.C6-2) were steadily expressed in both environments. Further, qSL.C6-1, qSL.C6-2, qCS.C6-1 and qCS.C6-4 fell into the same chromosomal region of the reference genome, indicating that these loci are involved in pleiotropic effects or are tightly linked. CONCLUSION: The current study identified a series of QTLs associated with curd architecture parameters, which might contribute essentially to the formation of present-day loose-curd cauliflower that is widely cultivated in China. These results may pave the way for intensive deciphering the molecular mechanisms of curd development and for marker-assisted selection of curd morphology in cauliflower breeding.


Asunto(s)
Brassica/genética , Flores/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Brassica/crecimiento & desarrollo , Mapeo Cromosómico , Flores/genética
15.
Int J Mol Sci ; 21(6)2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32183438

RESUMEN

"Riceyness" refers to the precocious development of flower bud initials over the curd surface of cauliflower, and it is regarded as undesirable for the market. The present study aimed to identify the candidate loci and genes responsible for the morphological difference in riceyness between a pair of cauliflower sister lines. Genetic analysis revealed that riceyness is controlled by a single dominant locus. An F2 population derived from the cross between these sister lines was used to construct "riceyness" and "non-riceyness" bulks, and then it was subjected to BSA-seq. On the basis of the results of Δ(SNP-index) analysis, a 4.0 Mb candidate region including 22 putative SNPs was mapped on chromosome C04. Combining the RNA-seq, gene function annotation, and target sequence analysis among two parents and other breeding lines, an orthologous gene of the Arabidopsis gene SOC1, Bo4g024850 was presumed as the candidate gene, and an upstream SNP likely resulted in riceyness phenotype via influencing the expression levels of Bo4g024850. These results are helpful to understand the genetic mechanism regulating riceyness, and to facilitate the molecular improvement on cauliflower curds.


Asunto(s)
Brassica , Cromosomas de las Plantas/genética , Flores , Sitios de Carácter Cuantitativo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Brassica/genética , Brassica/crecimiento & desarrollo , Mapeo Cromosómico , Flores/genética , Flores/crecimiento & desarrollo
16.
J Agric Food Chem ; 67(45): 12528-12537, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31631662

RESUMEN

Seeds of 32 pure lines and 6 commercial broccoli cultivars were used to investigate variation in glucosinolates and their breakdown products. The aliphatic glucosinolate content was 54.5-218.7 µmol/g fresh weight, accounting for >90% of the total glucosinolates. The major glucosinolates found were glucoraphanin and glucoerucin in 27 samples and progoitrin in 7 samples. A gas chromatography-flame ionization detector (GC-FID) method was used to identify glucosinolate breakdown products; nine products were directly determined using standards. Using Arabidopsis thaliana lines myb28myb29 and Landsberg erecta to hydrolyze each reference glucosinolate, seven products were tentatively identified. 4-(Methylsulfinyl)butyl isothiocyanate and 5-(methylsulfinyl)pentanenitrile contents were 2.6-91.1 µmol/g fresh weight and 0-35.4 µmol/g fresh weight, respectively, with epithionitriles being more common than nitriles in accessions rich in alkenyl glucosinolate. Additionally, (S)-5-vinyl-1,3-oxazolidine-2-thione was detected in accessions rich in progoitrin. Specific lines with altered glucosinolate profiles and breakdown products were obtained and discussed according to the putative glucosinolate metabolism pathway.


Asunto(s)
Brassica/química , Glucosinolatos/química , Extractos Vegetales/química , Arabidopsis/química , Arabidopsis/metabolismo , Brassica/metabolismo , Glucosinolatos/metabolismo , Extractos Vegetales/metabolismo , Semillas/química , Semillas/metabolismo
17.
BMC Plant Biol ; 19(1): 228, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31146678

RESUMEN

BACKGROUND: Some broccoli (Brassica oleracea L. italic) accessions have purple sepals and cold weather would deepen the purple color, while the sepals of other broccoli lines are always green even in cold winter. The related locus or gene is still unknown. In this study, a high-density genetic map was constructed based on specific locus amplified fragment (SLAF) sequencing in a doubled-haploid segregation population with 127 individuals. And mapping of the purple sepal trait in flower heads based on phenotypic data collected during three seasons was performed. RESULTS: A genetic map was constructed, which contained 6694 SLAF markers with an average sequencing depth of 81.37-fold in the maternal line, 84-fold in the paternal line, and 15.76-fold in each individual population studied. In all of the annual data recorded, three quantitative trait loci (QTLs) were identified that were all distributed within the linkage group (LG) 1. Among them, a major locus, qPH.C01-2, located at 36.393 cM LG1, was consistently detected in all analysis. Besides this locus, another two minor loci, qPH.C01-4 and qPH.C01-5, were identified near qPH.C01-2, based on the phenotypic data from spring of 2018. CONCLUSION: The purple sepal trait could be controlled by a major single locus and two minor loci. The genetic map and location of the purple sepal trait of flower heads provide an important foundation for mapping other compound traits and the identification of the genes related to purple sepal trait in broccoli.


Asunto(s)
Brassica/fisiología , Inflorescencia/fisiología , Pigmentación/genética , Sitios de Carácter Cuantitativo , Brassica/genética , Mapeo Cromosómico , Inflorescencia/genética
18.
BMC Plant Biol ; 19(1): 106, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890145

RESUMEN

BACKGROUND: MADS-box genes play important roles in vegetative growth and reproductive development and are essential for the correct development of plants (particularly inflorescences, flowers, and fruits). However, this gene family has not been identified nor their functions analyzed in Brassica oleracea. RESULTS: In this study, we performed a whole-genome survey of the complete set of MADS-box genes in B. oleracea. In total, 91 MADS-box transcription factors (TFs) were identified and categorized as type I (Mα, Mß, Mγ) and type II (MIKCC, MIKC*) groups according to the phylogeny and gene structure analysis. Among these genes, 59 were randomly distributed on 9 chromosomes, while the other 23 were assigned to 19 scaffolds and 9 genes from NCBI had no location information. Both RNA-sequencing and quantitative real-time-PCR analysis suggested that MIKC genes had more active and complex expression patterns than M type genes and most type II genes showed high flowering-related expression profiles. Additional quantitative real-time-PCR analysis of pedicel and four flower whorls revealed that the structure of the B.oleracea MIKC genes was conserved, but their homologues showed variable expression patterns compared to those in Arabidopsis thaliana. CONCLUSION: This paper gives a detailed overview of the BolMADS genes and their expression patterns. The results obtained in this study provide useful information for understanding the molecular regulation of flower development and further functional characterization of MADS-box genes in B. oleracea.


Asunto(s)
Brassica/genética , Flores/crecimiento & desarrollo , Genoma de Planta , Proteínas de Dominio MADS/genética , Brassica/crecimiento & desarrollo , Brassica/metabolismo , Cromosomas de las Plantas , Flores/metabolismo , Proteínas de Dominio MADS/metabolismo , Filogenia
19.
Front Plant Sci ; 10: 45, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761176

RESUMEN

A high-quality genetic map is important for mapping of compound traits. In this study, a genetic map was constructed based on the reference genome TO1000 after specific locus amplified fragment (SLAF) sequencing in a double-haploid segregation population of broccoli, and loci controlling hollow stem trait were identified in the genetic map. The genetic map contains 4,787 SLAF markers, with a mean marker distance of 0.22 cM and the mean sequencing depths of 91.14-fold in the maternal line, 88.97-fold in the paternal line and 17.11-fold in each DH progeny. A locus controlling the hollow stem trait, QHS.C09-2, which could explain 14.1% of the phenotypic variation, was steadily detected on the linkage group nine in the indicated data of 3 years' trials and BLUE analysis. The genetic map could lay an important foundation for mapping of compound traits, and mapping of hollow stem trait would be basis to clone the genes related to hollow stems in broccoli.

20.
Front Plant Sci ; 7: 334, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047515

RESUMEN

Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...