Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 117(1): 212-225, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37828913

RESUMEN

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinación/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tubo Polínico/metabolismo , Polen
2.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37806310

RESUMEN

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hormonas Peptídicas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Hormonas Peptídicas/metabolismo , Péptidos/metabolismo , Polen/metabolismo , Tubo Polínico/metabolismo , Aislamiento Reproductivo
3.
J Integr Plant Biol ; 64(11): 2047-2059, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36165344

RESUMEN

Double fertilization is an innovative phenomenon in angiosperms, in which one sperm cell first fuses with the egg cell to produce the embryo, and then the other sperm fuses with the central cell to produce the endosperm. However, the molecular mechanism of the preferential fertilization of egg cells is poorly understood. In this study, we report that two egg cell-secreted aspartic proteases, ECS1 and ECS2, play an important role in promoting preferential fertilization of egg cells in Arabidopsis. We show that simultaneous loss of ECS1 and ECS2 function resulted in an approximately 20% reduction in fertility, which can be complemented by the full-length ECS1/2 but not by corresponding active site mutants or by secretion-defective versions of ECS1/2. Detailed phenotypic analysis revealed that the egg cell-sperm cell attachment was compromised in ecs1 ecs2 siliques. Limited pollination assays with cyclin-dependent kinase a1 (cdka;1) pollen showed that preferential egg cell fertilization was impaired in the ecs1 ecs2 mutant. Taken together, these results demonstrate that egg cells secret two aspartic proteases, ECS1 and ECS2, to facilitate the attachment of sperm cells to egg cells so that preferential fertilization of egg cells is achieved. This study reveals the molecular mechanism of preferential fertilization in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Péptido Hidrolasas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilización/genética , Células Germinativas , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Mutación
4.
J Integr Plant Biol ; 64(11): 2039-2046, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36165373

RESUMEN

In flowering plants (angiosperms), fertilization of the egg cell by one sperm cell produces an embryo, whereas fusion of a second sperm cell with the central cell generates the endosperm. In most angiosperms like Arabidopsis, a pollen grain contains two isomorphic sperm cells required for this double fertilization process. A long-standing unsolved question is whether the two fertilization events have any preference. A tool to address this question is the usage of the cyclin-dependent kinase a1 (cdka;1) mutant pollen, which produces a single sperm-like cell (SLC). Here, we first adopt a complementation-based fluorescence-labeling method to successfully separate and collect cdka;1 mutant pollen containing a single SLC. Single-cell RNA-sequencing analysis revealed that cdka;1 SLCs show a gene expression profile highly similar to that of sperm cells and not to the generative cell, precursor of the two sperm cells. Pollination assays using a limited number of cdka;1 mutant pollen revealed that in 98.2% of the ovules, single fertilization of the egg cell occurred. Pollination of pistils with excessive cdka;1 mutant pollen allowed the delivery of a second SLC via fertilization recovery, which fertilized the central cell, resulting in 20.7% double-fertilized ovules. This indicates that cdka;1 SLCs are able to fertilize both the egg and the central cell. Taken together, our findings have answered a long-standing question and support that preferential fertilization of the egg cell is evident in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Arabidopsis/metabolismo , Semillas/genética , Semillas/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilización , Magnoliopsida/metabolismo
5.
Science ; 375(6578): 290-296, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35050671

RESUMEN

Fertilization of an egg by multiple sperm (polyspermy) leads to lethal genome imbalance and chromosome segregation defects. In Arabidopsis thaliana, the block to polyspermy is facilitated by a mechanism that prevents polytubey (the arrival of multiple pollen tubes to one ovule). We show here that FERONIA, ANJEA, and HERCULES RECEPTOR KINASE 1 receptor-like kinases located at the septum interact with pollen tube-specific RALF6, 7, 16, 36, and 37 peptide ligands to establish this polytubey block. The same combination of RALF (rapid alkalinization factor) peptides and receptor complexes controls pollen tube reception and rupture inside the targeted ovule. Pollen tube rupture releases the polytubey block at the septum, which allows the emergence of secondary pollen tubes upon fertilization failure. Thus, orchestrated steps in the fertilization process in Arabidopsis are coordinated by the same signaling components to guarantee and optimize reproductive success.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Péptidos/metabolismo , Tubo Polínico/fisiología , Transducción de Señal , Fertilización , Ligandos , Óvulo Vegetal/fisiología , Fosfotransferasas/metabolismo , Polen/metabolismo , Tubo Polínico/metabolismo , Polinización , Proteínas Quinasas/metabolismo
6.
Mol Plant ; 15(2): 354-362, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34740849

RESUMEN

The signaling pathway of the gaseous hormone ethylene is involved in plant reproduction, growth, development, and stress responses. During reproduction, the two synergid cells of the angiosperm female gametophyte both undergo programmed cell death (PCD)/degeneration but in a different manner: PCD/degeneration of one synergid facilitates pollen tube rupture and thereby the release of sperm cells, while PCD/degeneration of the other synergid blocks supernumerary pollen tubes. Ethylene signaling was postulated to participate in some of the synergid cell functions, such as pollen tube attraction and the induction of PCD/degeneration. However, ethylene-mediated induction of synergid PCD/degeneration and the role of ethylene itself have not been firmly established. Here, we employed the CRISPR/Cas9 technology to knock out the five ethylene-biosynthesis 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes and created Arabidopsis mutants free of ethylene production. The ethylene-free mutant plants showed normal triple responses when treated with ethylene rather than 1-aminocyclopropane-1-carboxylic acid, but had increased lateral root density and enlarged petal sizes, which are typical phenotypes of mutants defective in ethylene signaling. Using these ethylene-free plants, we further demonstrated that production of ethylene is not necessarily required to trigger PCD/degeneration of the two synergid cells, but certain components of ethylene signaling including transcription factors ETHYLENE-INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1) are necessary for the death of the persistent synergid cell.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Apoptosis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Etilenos/metabolismo , Etilenos/farmacología , Tubo Polínico , Reproducción
7.
Plant Cell ; 33(9): 3042-3056, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34125904

RESUMEN

In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pectinas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Proteínas de Transporte Vesicular/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cuerpos Multivesiculares/enzimología , Tubo Polínico/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Plant Physiol ; 186(2): 865-873, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33638984

RESUMEN

Reproductive isolation is a prerequisite to form and maintain a new species. Multiple prezygotic and postzygotic reproductive isolation barriers have been reported in plants. In the model plant, Arabidopsis thaliana conspecific pollen tube precedence controlled by AtLURE1/PRK6-mediated signaling has been recently reported as a major prezygotic reproductive isolation barrier. By accelerating emergence of own pollen tubes from the transmitting tract, A. thaliana ovules promote self-fertilization and thus prevent fertilization by a different species. Taking advantage of a septuple atlure1null mutant, we now report on the role of AtLURE1/PRK6-mediated signaling for micropylar pollen tube guidance. Compared with wild-type (WT) ovules, atlure1null ovules displayed remarkably reduced micropylar pollen tube attraction efficiencies in modified semi-in vivo A. thaliana ovule targeting assays. However, when prk6 mutant pollen tubes were applied, atlure1null ovules showed micropylar attraction efficiencies comparable to that of WT ovules. These findings indicate that AtLURE1/PRK6-mediated signaling regulates micropylar pollen tube attraction in addition to promoting emergence of own pollen tubes from the transmitting tract. Moreover, semi-in vivo ovule targeting competition assays with the same amount of pollen grains from both A. thaliana and Arabidopsis lyrata showed that A. thaliana WT and xiuqiu mutant ovules are mainly targeted by own pollen tubes and that atlure1null mutant ovules are also entered to a large extent by A. lyrata pollen tubes. Taken together, we report that AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube attraction representing an additional prezygotic isolation barrier.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/fisiología , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Polinización , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Aislamiento Reproductivo
9.
PLoS Genet ; 17(1): e1008748, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33493157

RESUMEN

The rate at which plants grow is a major functional trait in plant ecology. However, little is known about its evolution in natural populations. Here, we investigate evolutionary and environmental factors shaping variation in the growth rate of Arabidopsis thaliana. We used plant diameter as a proxy to monitor plant growth over time in environments that mimicked latitudinal differences in the intensity of natural light radiation, across a set of 278 genotypes sampled within four broad regions, including an outgroup set of genotypes from China. A field experiment conducted under natural conditions confirmed the ecological relevance of the observed variation. All genotypes markedly expanded their rosette diameter when the light supply was decreased, demonstrating that environmental plasticity is a predominant source of variation to adapt plant size to prevailing light conditions. Yet, we detected significant levels of genetic variation both in growth rate and growth plasticity. Genome-wide association studies revealed that only 2 single nucleotide polymorphisms associate with genetic variation for growth above Bonferroni confidence levels. However, marginally associated variants were significantly enriched among genes with an annotated role in growth and stress reactions. Polygenic scores computed from marginally associated variants confirmed the polygenic basis of growth variation. For both light regimes, phenotypic divergence between the most distantly related population (China) and the various regions in Europe is smaller than the variation observed within Europe, indicating that the evolution of growth rate is likely to be constrained by stabilizing selection. We observed that Spanish genotypes, however, reach a significantly larger size than Northern European genotypes. Tests of adaptive divergence and analysis of the individual burden of deleterious mutations reveal that adaptive processes have played a more important role in shaping regional differences in rosette growth than maladaptive evolution.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Herencia Multifactorial/genética , Selección Genética , Aclimatación/genética , Arabidopsis/crecimiento & desarrollo , China , Europa (Continente) , Variación Genética/genética , Genética de Población , Genotipo , Fenotipo , Desarrollo de la Planta/genética
10.
EMBO J ; 39(13): e103630, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449547

RESUMEN

Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Temperatura , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipocótilo/genética , Transactivadores/genética
11.
Mol Plant ; 13(2): 278-294, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31760161

RESUMEN

Precursor mRNA (pre-mRNA) splicing is essential for gene expression in most eukaryotic organisms. Previous studies from mammals, Drosophila, and yeast show that the majority of splicing events occurs co-transcriptionally. In plants, however, the features of co-transcriptional splicing (CTS) and its regulation still remain largely unknown. Here, we used chromatin-bound RNA sequencing to study CTS in Arabidopsis thaliana. We found that CTS is widespread in Arabidopsis seedlings, with a large proportion of alternative splicing events determined co-transcriptionally. CTS efficiency correlated with gene expression level, the chromatin landscape and, most surprisingly, the number of introns and exons of individual genes, but is independent of gene length. In combination with enhanced crosslinking and immunoprecipitation sequencing analysis, we further showed that the hnRNP-like proteins RZ-1B and RZ-1C promote efficient CTS globally through direct binding, frequently to exonic sequences. Notably, this general effect of RZ-1B/1C on splicing promotion is mainly observed at the chromatin level, not at the mRNA level. RZ-1C promotes CTS of multiple-exon genes in association with its binding to regions both proximal and distal to the regulated introns. We propose that RZ-1C promotes efficient CTS of genes with multiple exons through cooperative interactions with many exons, introns, and splicing factors. Our work thus reveals important features of CTS in plants and provides methodologies for the investigation of CTS and RNA-binding proteins in plants.


Asunto(s)
Arabidopsis/genética , Empalme del ARN , Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Exones , Código de Histonas , Intrones , Modelos Genéticos , Motivos de Nucleótidos , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Plantones/genética , Análisis de Secuencia de ARN , Transcripción Genética
12.
Curr Biol ; 29(19): 3256-3265.e5, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31564495

RESUMEN

In angiosperms, two sperm cells are transported and delivered by the pollen tube to the ovule to achieve double fertilization. Extensive communication takes place between the pollen tube and the female tissues until the sperm cell cargo is ultimately released. During this process, a pollen tube surface-located receptor complex composed of ANXUR1/2 (ANX1/2) and Buddha's Paper Seal 1/2 (BUPS1/2) was reported to control the maintenance of pollen tube integrity by perceiving the autocrine peptide ligands rapid alkalinization factor 4 and 19 (RALF4/19). It was further hypothesized that pollen-tube rupture to release sperm is caused by the paracrine RALF34 peptide from the ovule interfering with this signaling pathway. In this study, we identified two Arabidopsis pollen-tube-expressed glycosylphosphatidylinositol-anchored proteins (GPI-APs), LORELEI-like-GPI-anchored protein 2 (LLG2) and LLG3, as co-receptors in the BUPS-ANX receptor complex. llg2 llg3 double mutants exhibit severe fertility defects. Mutant pollen tubes rupture early during the pollination process. Furthermore, LLG2 and LLG3 interact with ectodomains of both BUPSs and ANXURs, and this interaction is remarkably enhanced by the presence of RALF4/19 peptides. We further demonstrate that the N terminus (including a YISY motif) of the RALF4 peptide ligand interacts strongly with BUPS-ANX receptors but weakly with LLGs and is essential for its biological function, and its C-terminal region is sufficient for LLG binding. In conclusion, we propose that LLG2/3 serve as co-receptors during BUPS/ANX-RALF signaling and thereby further establish the importance of GPI-APs as key regulators in plant reproduction processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Ligadas a GPI/genética , Tubo Polínico/crecimiento & desarrollo , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Ligadas a GPI/metabolismo , Ligandos
13.
Science ; 364(6443)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31147494

RESUMEN

Reproductive isolation is a prerequisite for speciation. Failure of communication between female tissues of the pistil and paternal pollen tubes imposes hybridization barriers in flowering plants. Arabidopsis thaliana LURE1 (AtLURE1) peptides and their male receptor PRK6 aid attraction of the growing pollen tube to the ovule. Here, we report that the knockout of the entire AtLURE1 gene family did not affect fertility, indicating that AtLURE1-PRK6-mediated signaling is not required for successful fertilization within one Arabidopsis species. AtLURE1s instead function as pollen tube emergence accelerators that favor conspecific pollen over pollen from other species and thus promote reproductive isolation. We also identified maternal peptides XIUQIU1 to -4, which attract pollen tubes regardless of species. Cooperation between ovule attraction and pollen tube growth acceleration favors conspecific fertilization and promotes reproductive isolation.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Genes de Plantas/fisiología , Péptidos/fisiología , Tubo Polínico/crecimiento & desarrollo , Aislamiento Reproductivo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Técnicas de Inactivación de Genes , Péptidos/genética , Tubo Polínico/genética
15.
Biosens Bioelectron ; 109: 230-236, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29567568

RESUMEN

MicroRNA (miRNA) sensing, especially the miRNA-200 family, is increasingly targeted for cancer diagnostics. As the sensing schemes often rely on nanoparticles functionalized with a specific oligonucleotide, we investigate the hydribization conditions using the common case of surface plasmon resonance (SPR) sensing of miRNA and a gold nanoparticle (Au NP) competitor. In this type of assays, the Au NPs compete with the microRNA to bind the capture probe immobilized on the gold surface. In our study, we simplify and improve the detection procedure by adopting 11-mercaptoundecanoic acid (11-MUA) as linker to the gold surface, not only omitting the blocking step of 6-mercapto-1-hexanol (MCH), but also increasing the probe density. We report that the response in our SPR sensing studies increased with the size of Au NPs according to the plasmon ruler equation, but the larger AuNPs of 32 nm lacked colloidal stability. In addition, decreasing the ratio of oligonucleotide to Au NPs and the addition of polyethylene glycol (PEG) to hybridization buffer also favored a better response in SPR sensing of miRNA. The optimization led to an improved detection sensitivity in our competition method and a detection limit as low as 500 pM for miRNA-200b without amplification of miRNA and use of other amplification schemes.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal/química , MicroARNs/aislamiento & purificación , Aptámeros de Nucleótidos/química , Ácidos Grasos/química , Oro/química , Humanos , Límite de Detección , MicroARNs/química , MicroARNs/genética , Compuestos de Sulfhidrilo/química , Resonancia por Plasmón de Superficie
16.
Plant Cell ; 30(4): 835-852, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29588390

RESUMEN

Phytochrome A (phyA) is the primary plant photoreceptor responsible for perceiving and mediating various responses to far-red (FR) light and is essential for survival in canopy shade. In this study, we identified two Arabidopsis thaliana mutants that grew longer hypocotyls in FR light. Genetic analyses showed that they were allelic and their FR phenotypes were caused by mutations in the gene named TANDEM ZINC-FINGER/PLUS3 (TZP), previously shown to encode a nuclear protein involved in blue light signaling and phyB-dependent regulation of photoperiodic flowering. We show that the expression of TZP is dramatically induced by light and that TZP proteins are differentially modified in different light conditions. Furthermore, we show that TZP interacts with both phyA and FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and regulates the abundance of phyA, FHY1, and ELONGATED HYPOCOTYL5 proteins in FR light. Moreover, our data indicate that TZP is required for the formation of a phosphorylated form of phyA in the nucleus in FR light. Together, our results identify TZP as a positive regulator of phyA signaling required for phosphorylation of the phyA photoreceptor, thus suggesting an important role of phosphorylated phyA in inducing the FR light response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fitocromo A/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Luz , Proteínas Nucleares , Fosforilación , Factores de Transcripción/genética , Dedos de Zinc
17.
J Genet Genomics ; 45(3): 155-168, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29580769

RESUMEN

In plants, RNA editing is a post-transcriptional process that changes specific cytidine to uridine in both mitochondria and plastids. Most pentatricopeptide repeat (PPR) proteins are involved in organelle RNA editing by recognizing specific RNA sequences. We here report the functional characterization of a PPR protein from the DYW subclass, Baili Xi (BLX), which contains five PPR motifs and a DYW domain. BLX is essential for early seed development, as plants lacking the BLX gene was embryo lethal and the endosperm failed to initiate cellularization. BLX was highly expressed in the embryo and endosperm, and the BLX protein was specifically localized in mitochondria, which is essential for BLX function. We found that BLX was required for the efficient editing of 36 editing sites in mitochondria. Moreover, BLX was involved in the splicing regulation of the fourth intron of nad1 and the first intron of nad2. The loss of BLX function impaired the mitochondrial function and increased the reactive oxygen species (ROS) level. Genetic complementation with truncated variants of BLX revealed that, in addition to the DYW domain, only the fifth PPR motif was essential for BLX function. The upstream sequences of the BLX-targeted editing sites are not conserved, suggesting that BLX serves as a novel and major mitochondrial editing factor (MEF) via a new non-RNA-interacting manner. This finding provides new insights into how a DYW-type PPR protein with fewer PPR motifs regulates RNA editing in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Complejo I de Transporte de Electrón/genética , NADH Deshidrogenasa/genética , Desarrollo de la Planta/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/genética , Edición de ARN/genética , Empalme del ARN/genética , ARN Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
18.
Science ; 358(6370): 1596-1600, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29242234

RESUMEN

In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube-expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube-female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fertilización , Tubo Polínico/fisiología , Proteínas Quinasas/metabolismo , Ligandos , Transducción de Señal
19.
Genome Biol ; 18(1): 239, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29284515

RESUMEN

BACKGROUND: Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. RESULTS: We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. CONCLUSIONS: A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.


Asunto(s)
Adaptación Biológica , Arabidopsis/fisiología , China , Ecosistema , Variación Genética , Genética de Población , Genoma de Planta , Genómica , Ríos , Selección Genética
20.
J Integr Plant Biol ; 59(9): 629-641, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28776932

RESUMEN

Two yeast Brix family members Ssf1 and Ssf2, involved in large ribosomal subunit synthesis, are essential for yeast cell viability and mating efficiency. Their putative homologs exist in the Arabidopsis genome; however, their role in plant development is unknown. Here, we show that Arabidopsis thaliana SNAIL1 (AtSNAIL1), a protein sharing high sequence identity with yeast Ssf1 and Ssf2, is critical to mitosis progression of female gametophyte development. The snail1 homozygous mutant was nonviable and its heterozygous mutant was semi-sterile with shorter siliques. The mutation in SNAIL1 led to absence of female transmission and reduced male transmission. Further phenotypic analysis showed that the synchronic development of female gametophyte in the snail1 heterozygous mutant was greatly impaired and the snail1 pollen tube growth, in vivo, was also compromised. Furthermore, SNAIL1 was a nucleolar-localized protein with a putative role in protein synthesis. Our data suggest that SNAIL1 may function in ribosome biogenesis like Ssf1 and Ssf2 and plays an important role during megagametogenesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas Nucleares/fisiología , Óvulo Vegetal/crecimiento & desarrollo , Fertilización , Mitosis , Proteínas de Plantas/biosíntesis , Tubo Polínico/fisiología , Polinización , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...