Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Pediatr ; 21(1): 259, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074250

RESUMEN

BACKGROUND: Neonatal hyperbilirubinemia causing jaundice is common in East Asian population. Uridine diphosphate glucuronosyltransferase isoenzyme (UGT1A1) glucuronidates bilirubin and converts the toxic form of bilirubin to its nontoxic form. METHOD: A retrospective study was conducted to review clinical information of ABO hemolysis neonates (ABO HDN) admitted to the Department of Neonatology, referred for neonatal hyperbilirubinemia, in a large general hospital of southern China from 2011 to 2017. Variation status of UGT1A1 was determined by direct sequencing or genotype assays. RESULT: Sixty-nine ABO HDNs were included into the final analysis. UGT1A1 c.211 G > A mutation (UGT1A1*6, p.Arg71Gly, rs4148323) was significantly associated with the increased bilirubin level in ABO HDNs, after adjusted by age, sex and feeding method (P = 0.019 for TBIL, P = 0.02 for IBIL). Moreover, heterozygous and/or homozygous UGT1A1 mutations in the coding sequence region were significantly associated with the increased risk of developing hazardous hyperbilirubinemia (as defined by TSB > 427 umol/L) as compared those with a normal UGT1A1 genotype (ORadj = 9.16, 95%CI 1.99-42.08, P = 0.002) in the study cohort. CONCLUSION: UGT1A1 variant in coding region is actively involved in the pathogenesis of ABO hemolysis related neonatal hyperbilirubinemia. Genetic assessment of UGT1A1 may be useful for clinical diagnosis of neonatal unconjugated hyperbilirubinemia.


Asunto(s)
Hiperbilirrubinemia Neonatal , Bilirrubina , China , Glucuronosiltransferasa/genética , Humanos , Hiperbilirrubinemia , Hiperbilirrubinemia Neonatal/genética , Recién Nacido , Mutación , Estudios Retrospectivos
2.
Sci Rep ; 8(1): 6989, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725066

RESUMEN

RNA presents intringuing roles in many cellular processes and its versatility underpins many different applications in synthetic biology. Nonetheless, RNA origami as a method for nanofabrication is not yet fully explored and the majority of RNA nanostructures are based on natural pre-folded RNA. Here we describe a biologically inert and uniquely addressable RNA origami scaffold that self-assembles into a nanoribbon by seven staple strands. An algorithm is applied to generate a synthetic De Bruijn scaffold sequence that is characterized by the lack of biologically active sites and repetitions larger than a predetermined design parameter. This RNA scaffold and the complementary staples fold in a physiologically compatible isothermal condition. In order to monitor the folding, we designed a new split Broccoli aptamer system. The aptamer is divided into two nonfunctional sequences each of which is integrated into the 5' or 3' end of two staple strands complementary to the RNA scaffold. Using fluorescence measurements and in-gel imaging, we demonstrate that once RNA origami assembly occurs, the split aptamer sequences are brought into close proximity forming the aptamer and turning on the fluorescence. This light-up 'bio-orthogonal' RNA origami provides a prototype that can have potential for in vivo origami applications.


Asunto(s)
Nanotubos de Carbono , Pliegue del ARN , ARN/metabolismo , Fluorometría , Imagen Óptica , ARN/genética , Temperatura
3.
Heliyon ; 3(11): e00459, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29202109

RESUMEN

Streptomycetes are Gram-positive filamentous soil bacteria that grow by tip extension and branching, forming a network of multinucleoid hyphae. These bacteria also have an elaborate process of morphological differentiation, which involves the formation of an aerial mycelium that eventually undergoes extensive septation into chains of uninucleoid cells that further metamorphose into spores. The tubulin-like FtsZ protein is essential for this septation process. Most of the conserved cell division genes (including ftsZ) have been inactivated in Streptomyces without the anticipated lethality, based on studies of many other bacteria. However, there are still some genes of the Streptomyces division and cell wall (dcw) cluster that remain uncharacterized, the most notable example being the two conserved genes immediately adjacent to ftsZ (i.e. ylmDE). Here, for the first time, we made a ylmDE mutant in Streptomyces venezuelae and analysed it using epifluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The mutant showed no significant effects on growth, cross-wall formation and sporulation in comparison to the wild type strain, which suggests that the ylmDE genes do not have an essential role in the Streptomyces cell division cycle (at least under the conditions of this study).

4.
Chem Commun (Camb) ; 53(65): 9129-9132, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28762392

RESUMEN

Here we applied ionic interactions as the driving force to fabricate well-ordered bicomponent assemblies by using two porphyrin ions equipped with oppositely-charged groups. Two kinds of bimolecular chessboard structures were successfully constructed on Au(111) and investigated by scanning tunneling microscopy (STM).


Asunto(s)
Nanoestructuras/química , Porfirinas/química , Técnicas Electroquímicas , Oro/química , Iones , Metaloporfirinas/química , Microscopía de Túnel de Rastreo , Modelos Moleculares
5.
ACS Synth Biol ; 6(7): 1140-1149, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28414914

RESUMEN

Nanotechnology and synthetic biology are rapidly converging, with DNA origami being one of the leading bridging technologies. DNA origami was shown to work well in a wide array of biotic environments. However, the large majority of extant DNA origami scaffolds utilize bacteriophages or plasmid sequences thus severely limiting its future applicability as a bio-orthogonal nanotechnology platform. In this paper we present the design of biologically inert (i.e., "bio-orthogonal") origami scaffolds. The synthetic scaffolds have the additional advantage of being uniquely addressable (unlike biologically derived ones) and hence are better optimized for high-yield folding. We demonstrate our fully synthetic scaffold design with both DNA and RNA origamis and describe a protocol to produce these bio-orthogonal and uniquely addressable origami scaffolds.


Asunto(s)
ADN/química , Nanoestructuras/química , Nanotecnología/métodos , ARN/química , Biología Sintética/métodos , Microscopía de Fuerza Atómica
6.
ACS Nano ; 10(9): 8746-50, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27508323

RESUMEN

We report herein an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of iron-phthalocyanine (FePc)-catalyzed oxygen reduction reaction (ORR). A highly ordered FePc adlayer is revealed on a Au(111) electrode. The center ions in the FePc adlayer show uniform high contrast in an oxygen-saturated electrolyte, which is attributed to the formation of an FePc-O2 complex. In situ STM results reveal the sharp contrast change upon shifting the electrode potential to trigger the ORR. Theoretical simulation has supplied further evidence for the contrast difference of the adsorbed FePc species.

7.
Chem Asian J ; 9(8): 2077-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24909757

RESUMEN

Understanding the electron transport between single molecules connected through weak interaction is of great importance for molecular electronics. In this paper, we report measurements of the conductivity of the dimeric 1,4-benzenedithiol (BDT) junction using the scanning tunneling microscopy (STM)-based current-displacement I(s) method. The conductance was measured to be 6.14×10(-6)  G0 , a value almost two orders of magnitude lower than that of the monomer BDT junction. In control experiments, the probability of junction formation decreased with the presence of tris(2-chloroethyl) phosphate (TCEP), a reducing reagent for the disulfide bond. According to theoretical computations, the dihedral angle of the SS bond tends to take a perpendicular conformation. This non-conjugated structure localizes the electron distribution and accounts for the low conductivity of the disulfide linkage.

8.
Langmuir ; 30(12): 3502-6, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24611792

RESUMEN

Hybrid bilayers consisting of 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and meso-tetra(4-pyridyl)porphine (TPyP) have been successfully constructed on Au(111) and investigated by electrochemical scanning tunneling microscopy (ECSTM). Under the guidance of the electrostatic interaction between negatively charged sulfonate groups and positively charged pyridyl groups, the underlying HPTS arrays act as templates for the deposition of cationic TPyPs, forming two types of TPyP/HPTS complex bilayers. The present work provides a feasible way to fabricate hybrid multilayers on the electrode surface via electrostatic interaction, which has great significance for the design of molecular nanodevices.

9.
J Am Chem Soc ; 136(8): 3184-91, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24483295

RESUMEN

The electron donor-acceptor dyads are an emerging class of materials showing important applications in nonlinear optics, dye-sensitized solar cells, and molecular electronics. Investigation of their structure and electron transfer at the molecular level provides insights into the structure-property relationship and can benefit the design and preparation of electron donor-acceptor dyad materials. Herein, the interface adstructure and electron transfer of buckyferrocene Fe(C60Me5)Cp, a typical electron donor-acceptor dyad, is directly probed using in situ electrochemical scanning tunneling microscopy (STM) combined with theoretical simulations. It is found that the adsorption geometry and assembled structure of Fe(C60Me5)Cp is significantly affected by the electrochemical environments. In 0.1 M HClO4 solution, Fe(C60Me5)Cp forms well-ordered monolayers and multilayers on Au(111) surfaces with molecular dimer as the building block. In 0.1 M NaClO4 solution, typical six-fold symmetric close-packed monolayer with vertically adsorbed Fe(C60Me5)Cp is formed. Upon electrochemical oxidation, the oxidized Fe(C60Me5)Cp shows higher brightness in an STM image, which facilitates the direct visualization of the interfacial electrochemical electron transfer process. Theoretical simulation indicates that the electrode potential-activated, one-electron transfer from Fe(C60Me5)Cp to the electrode leads to the change of the delocalization character of the frontier orbital in the molecule, which is responsible for the STM image contrast change. This result is beneficial for understanding the structure and property of single electron donor-acceptor dyads. It also provides a direct approach to study the electron transfer of electron donor-acceptor compounds at the molecular level.

10.
Langmuir ; 29(9): 2955-60, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23410068

RESUMEN

Surface modifications of a Au(111) electrode with 4-bromobenzenediazonium tetrafluoroborate (BBD) in acetonitrile (ACN) and 0.1 M HClO4 have been characterized by scanning tunneling microscopy (STM). In ACN, STM results reveal the formation of disordered thin organic films. The involvement of the radical as an intermediate is evidenced by the negative effect of radical scavengers on organic thin film formation. In contrast, the 4,4'-dibromobiphenyl monolayer is observed when the aqueous solution is used as a medium to carry out the grafting experiment. The biphenyl compound is considered to be generated by a radical-radical coupling reaction.

11.
Langmuir ; 29(1): 264-70, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23227883

RESUMEN

The adsorption behaviors of subphthalocyanine (SubPc) and subnaphthalocyanine (SubNc) on the Au(111) surface were investigated by electrochemical scanning tunneling microscopy (ECSTM). Two types of ordered adlayer structures of SubPc were observed at 550 mV versus the reversible hydrogen electrode (RHE). All of the SubPc molecules take the Cl-down adsorption configuration on Au(111) in both structures. The ordered adlayers exist in the potential range between 350 and 650 mV. The SubNc molecules adsorb on Au(111) in a less-ordered pattern than the SubPc molecules. The present work provides direct evidence for understanding the potential-controlled adsorption behaviors of SubPc and SubNc on the Au(111) surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...