Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(23): 233602, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354413

RESUMEN

We experimentally and theoretically study a driven hybrid circuit quantum electrodynamics (cQED) system beyond the dispersive coupling regime. Treating the cavity as part of the driven system, we develop a theory applicable to such strongly coupled and to multiqubit systems. The fringes measured for a single driven double quantum dot (DQD)-cavity setting and the enlarged splittings of the hybrid Floquet states in the presence of a second DQD are well reproduced with our model. This opens a path to study Floquet states of multiqubit systems with arbitrarily strong coupling and reveals a new perspective for understanding strongly driven hybrid systems.

2.
Nano Lett ; 23(10): 4176-4182, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37133858

RESUMEN

We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high-impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity (Ctotal > 17.6) interaction between the qubit ensemble and the resonator, we tune the charge-photon coupling and observe the collective microwave response changing from linear to nonlinear. Our results present the maximum number of DQDs coupled to a resonator and manifest a potential platform for scaling up qubits and studying collective quantum effects in semiconductor-superconductor hybrid cavity quantum electrodynamics systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA