Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; 242: 109862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490292

RESUMEN

The continual exposure of retinal tissues to oxidative stress leads to discernible anatomical and physiological alterations. Specifically, the onslaught of oxidative damage escalates the irreversible death of retinal pigmented epithelium (RPE) cells, pinpointed as the fundamental pathological event in dry age-related macular degeneration (AMD). There is a conspicuous lack of effective therapeutic strategies to counteract this degenerative process. This study screened a library of antioxidants for their ability to protect RPE cells against oxidative stress and identified L-ergothioneine (EGT) as a potent cytoprotective agent. L-ergothioneine provided efficient protection against oxidative stress-damaged RPE and maintained cell redox homeostasis and normal physiological functions. It maintained the normal structure of the retina in mice under oxidative stress conditions. Transcriptomic analysis revealed that EGT counteracted major gene expression changes induced by oxidative stress. It upregulated antioxidant gene expression and inhibited NRF2 translocation. The inhibition of NRF2 abolished EGT's protective effects, suggesting that NRF2 activation contributes to its mechanism of action. In conclusion, we identified EGT as a safe and effective small-molecule compound that is expected to be a novel antioxidative agent for treating AMD.


Asunto(s)
Antioxidantes , Ergotioneína , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Epitelio Pigmentado de la Retina , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Ergotioneína/farmacología , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Degeneración Macular/patología , Células Cultivadas , Humanos , Western Blotting , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Front Cardiovasc Med ; 9: 1061146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588579

RESUMEN

Introduction: CKD-induced pathological cardiac remodeling is characterized by myocardial hypertrophy and cardiac fibrosis. The available therapeutic options are limited, it is thus urgently needed to identify novel therapeutic targets. Renalase (RNLS) is a newly discovered protein secreted by the kidney and was found beneficial in many renal diseases. But whether it exerts protective effects on cardiac remodeling in CKD remains unclear. Methods: RNLS knockout (KO) and wild-type (WT) mice were both used to build CKD models and the adeno-associated virus (AAV9) system was used to overexpress RNLS cardiac specifically. Echocardiography was performed to detect cardiac structural changes every 6 weeks until 18 weeks post-surgery. High throughput sequencing was performed to understand the underlying mechanisms and the effects of RNLS on cardiac fibroblasts were validated in vitro. Results: Knockout of RNLS aggravated cardiac remodeling in CKD, while RNLS cardiac-specific overexpression significantly reduced left ventricular hypertrophy and cardiac fibrosis induced by CKD. The following RNA-sequencing analysis revealed that RNLS significantly downregulated the extracellular matrix (ECM) receptor interaction pathway, ECM organization, and several ECM-related proteins. GSEA results showed RNLS significantly downregulated several profibrotic biological processes of cardiac fibroblasts which were upregulated by CKD, including fibroblast proliferation, leukocyte migration, antigen presentation, cytokine production, and epithelial-mesenchymal transition (EMT). In vitro, we validated that RNLS reduced the primary cardiac fibroblast proliferation and α-SMA expression stimulated by TGF-ß. Conclusion: In this study, we examined the cardioprotective role of RNLS in CKD-induced cardiac remodeling. RNLS may be a potential therapeutic factor that exerts an anti-fibrotic effect in pathological cardiac remodeling.

3.
Signal Transduct Target Ther ; 6(1): 5, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33414365

RESUMEN

Forkhead box C1 (FOXC1) is required for neural crest and ocular development, and mutations in FOXC1 lead to inherited Axenfeld-Rieger syndrome. Here, we find that FOXC1 and paired box 6 (PAX6) are co-expressed in the human limbus and central corneal epithelium. Deficiency of FOXC1 and alternation in epithelial features occur in patients with corneal ulcers. FOXC1 governs the fate of the corneal epithelium by directly binding to lineage-specific open promoters or enhancers marked by H3K4me2. FOXC1 depletion not only activates the keratinization pathway and reprograms corneal epithelial cells into skin-like epithelial cells, but also disrupts the collagen metabolic process and interferon signaling pathways. Loss of interferon regulatory factor 1 and PAX6 induced by FOXC1 dysfunction is linked to the corneal ulcer. Collectively, our results reveal a FOXC1-mediated regulatory network responsible for corneal epithelial homeostasis and provide a potential therapeutic target for corneal ulcer.


Asunto(s)
Úlcera de la Córnea/metabolismo , Células Epiteliales/metabolismo , Epitelio Corneal/metabolismo , Factores de Transcripción Forkhead/deficiencia , Células Cultivadas , Úlcera de la Córnea/genética , Úlcera de la Córnea/patología , Células Epiteliales/patología , Epitelio Corneal/patología , Factores de Transcripción Forkhead/metabolismo , Humanos , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo
4.
Signal Transduct Target Ther ; 5(1): 20, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296021

RESUMEN

Accumulated oxidative damage may lead to irreversible retinal pigmented epithelium (RPE) cell death, which is considered to be the primary cause of dry age-related macular degeneration (AMD), leading to blindness in the elderly. However, an effective therapy for this disease is lacking. Here, we described a robust high-content screening procedure with a library of 814 protective compounds and found that D609 strongly protected RPE cells from sodium iodate (SI)-induced oxidative cell death and prolonged their healthy survival. D609 effectively attenuated excessive reactive oxygen species (ROS) and prevented severe mitochondrial loss due to oxidative stress in the RPE cells. Surprisingly, the potent antioxidative effects of D609 were not achieved through its own reducibility but were primarily dependent on its ability to increase the expression of metallothionein. The injection of this small water-soluble molecule also showed an explicit protective effect of the RPE layer in an SI-induced AMD mouse model. These findings suggested that D609 could serve as a novel antioxidative protector of RPE cells both in vitro and in vivo and unveiled a novel antioxidative mechanism of D609, which may ultimately have clinical applications for the treatment of AMD.


Asunto(s)
Degeneración Macular/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Mitocondrias/genética , Norbornanos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/patología , Tiocarbamatos/farmacología
5.
Acta Biochim Biophys Sin (Shanghai) ; 52(1): 58-63, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31681945

RESUMEN

Cardiac hypertrophy is considered to be a leading factor in heart function-related deaths. In this study, we explored the potential mechanism underlying cardiac hypertrophy induced by isoproterenol. Our results showed that isoproterenol induced cardiac hypertrophy in AC16 cells, as reflected by the increased cell surface area and increased hypertrophic markers, which was accompanied by increased ubiquitin-protein ligase E3a (UBE3A) expression. Moreover, UBE3A knockdown by siRNAs accelerated cardiac hypertrophy, suggesting that increased UBE3A expression induced by isoproterenol might be a protective response and UBE3A might be a protective factor against cardiac hypertrophy. Our study also revealed that UBE3A knockdown increased the protein expression of the TLR4/MMP-9 pathway that has been shown to be associated with cardiac hypertrophy, which suggested that UBE3A-mediated protection is likely to be associated with the blockade of the TLR4/MMP-9 signaling pathway. UBE3A might be thus a potential target gene for the treatment of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Isoproterenol/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Receptor Toll-Like 4/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Isoproterenol/efectos adversos , Miocitos Cardíacos/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Transfección , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...