Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life Sci ; 339: 122446, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246520

RESUMEN

AIMS: High dietary salt consumption is a risk factor for inflammatory bowel disease (IBD). Corin is a protease that activates atrial natriuretic peptide (ANP), thereby regulating sodium homeostasis. Corin acts in multiple tissues, including the intestine. In mice, corin deficiency impairs intestinal sodium excretion. This study aims to examine if reduced intestinal sodium excretion alters the pathophysiology of IBD. MAIN METHODS: Wild-type (WT), Corin knockout (KO), and Corin kidney conditional KO (kcKO) mice were tested in a colitis model induced by dextran sulfide sodium (DSS). Effects of ANP on DSS-induced colitis were tested in WT and Corin KO mice. Body weight changes in the mice were monitored. Necropsy, histological analysis, and immunostaining studies were conducted to examine colon length and mucosal lesions. Fecal sodium levels were measured. RT-PCR was done to analyze proinflammatory genes in colon samples. KEY FINDINGS: DSS-treated Corin KO mice had an ameliorated colitis phenotype with less body weight loss, longer colon lengths, smaller mucosal lesions, lower disease scores, more preserved goblet cells, and suppressed proinflammatory genes in the colon. In longitudinal studies, the DSS-treated Corin KO mice had delayed onset of colon mucosal lesions. ANP administration lessened the colitis in WT, but not Corin KO, mice. Analyses of WT, Corin KO, and Corin kcKO mice indicated that fecal sodium excretion, controlled by intestinal corin, may regulate inflammatory responses in DSS-induced colitis in mice. SIGNIFICANCE: Our findings indicate a role of corin in intestinal pathophysiology, suggesting that reduced intestinal sodium level may offer protective benefits against IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Sulfato de Dextran/toxicidad , Colon , Colitis/patología , Ratones Noqueados , Enfermedades Inflamatorias del Intestino/patología , Sodio , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Serina Endopeptidasas/genética
2.
Biology (Basel) ; 12(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37508377

RESUMEN

Sodium excretion, a critical process in sodium homeostasis, occurs in many tissues, including the kidney and intestine. Unlike in the kidney, the hormonal regulation of intestinal sodium excretion remains unclear. Atrial natriuretic peptide (ANP) is a crucial hormone in renal natriuresis. Corin is a protease critical for ANP activation. Corin and ANP are expressed mainly in the heart. In this study, we investigated corin, ANP, and natriuretic peptide receptor A (Npra) expression in mouse intestines. Corin and ANP expression was co-localized in enteroendocrine cells, whereas Npra expression was on the luminal epithelial cells. In Corin knockout (KO) mice, fecal Na+ and Cl- excretion decreased compared with that in wild-type (WT) mice. Such a decrease was not found in conditional Corin KO mice lacking cardiac corin selectively. In kidney conditional Corin KO mice lacking renal corin, fecal Na+ and Cl- excretion increased, compared to that in WT mice. When WT, Corin KO, and the kidney conditional KO mice were treated with aldosterone, the differences in fecal Na+ and Cl- levels disappeared. These results suggest that intestinal corin may promote fecal sodium excretion in a paracrine mechanism independent of the cardiac corin function. The increased fecal sodium excretion in the kidney conditional Corin KO mice likely reflected an intestinal compensatory response to renal corin deficiency. Our results also suggest that intestinal corin activity may antagonize aldosterone action in the promotion of fecal sodium excretion. These findings help us understand the hormonal mechanism controlling sodium excretion the intestinal tract.

3.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232551

RESUMEN

Atrial natriuretic peptide (ANP)-mediated natriuresis is known as a cardiac endocrine function in sodium and body fluid homeostasis. Corin is a protease essential for ANP activation. Here, we studied the role of renal corin in regulating salt excretion and blood pressure. We created corin conditional knockout (cKO), in which the Corin gene was selectively disrupted in the kidney (kcKO) or heart (hcKO). We examined the blood pressure, urinary Na+ and Cl- excretion, and cardiac hypertrophy in wild-type, corin global KO, kcKO, and hcKO mice fed normal- and high-salt diets. We found that on a normal-salt diet (0.3% NaCl), corin kcKO and hcKO mice had increased blood pressure, indicating that both renal and cardiac corin is necessary for normal blood pressure in mice. On a high-salt diet (4% NaCl), reduced urinary Na+ and Cl- excretion, increased body weight, salt-exacerbated hypertension, and cardiac hypertrophy were observed in corin kcKO mice. In contrast, impaired urinary Na+ and Cl- excretion and salt-exacerbated hypertension were not observed in corin hcKO mice. These results indicated that renal corin function is important in enhancing natriuresis upon high salt intakes and that this function cannot be compensated by the cardiac corin function in mice.


Asunto(s)
Factor Natriurético Atrial , Hipertensión , Animales , Factor Natriurético Atrial/genética , Presión Sanguínea/fisiología , Cardiomegalia , Homeostasis , Hipertensión/genética , Riñón , Ratones , Serina Endopeptidasas/genética , Sodio , Cloruro de Sodio , Cloruro de Sodio Dietético/efectos adversos
4.
Biology (Basel) ; 11(5)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35625445

RESUMEN

Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.

5.
Int J Biol Macromol ; 201: 85-92, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998874

RESUMEN

Vitamin B12 is an essential nutrient acquired via dietary intake. Receptor-mediated endocytosis is a key mechanism in vitamin B12 absorption, cellular uptake, and reabsorption. CD320 is a type I transmembrane protein responsible for cellular uptake of vitamin B12 in peripheral tissues. In this study, we examined segmental distribution and cellular expression of CD320 in mouse kidneys and intestines. We show that CD320 is expressed on the luminal surface in the small intestine and in proximal tubules in the kidney, suggesting that, in addition to its role in vitamin B12 uptake in peripheral tissues, CD320 may participate in vitamin B12 absorption in the small intestine and reabsorption in the kidney. Moreover, we show that an amino acid motif, DSSDE, in the second low-density lipoprotein receptor class A domain of CD320 is a key apical membrane targeting signal in both renal and intestinal epithelial cells. Mutations or deletion of this motif abolish the specific apical membrane expression of CD320 in polarized Madin-Darby canine kidney cells and human colon cancer-derived Caco-2 cells. In short-hairpin RNA-based gene knockdown experiments, we show that the apical membrane targeting of CD320 is mediated by a Rab11a-dependent mechanism. These results extend our knowledge regarding the cell biology of CD320 and its role in vitamin B12 metabolism.


Asunto(s)
Células Epiteliales , Vitamina B 12 , Animales , Antígenos CD , Células CACO-2 , Perros , Células Epiteliales/metabolismo , Humanos , Intestinos , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Receptores de Superficie Celular
6.
J Am Heart Assoc ; 10(7): e019961, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33759549

RESUMEN

Background Corin is a transmembrane protease that activates ANP and BNP (atrial and B-type natriuretic peptides). Impaired corin expression and function are associated with heart failure. In this study, we characterized a soluble form of corin (sCorin) and examined its effects on cardiac morphology and function in mouse heart failure models. Methods and Results sCorin, consisting of the full-length extracellular fragment of human corin with an engineered activation site, was expressed in Chinese hamster ovary cells, purified from the conditioned medium with affinity chromatography, and characterized in pro-ANP processing assays in vitro and pharmacokinetic studies in mice. Effects of sCorin on mouse models of heart failure induced by left coronary artery ligation and transverse aortic constriction were assessed by ELISA analysis of plasma markers, histologic examination, and echocardiography. We showed that purified and activated sCorin converted pro-ANP to ANP that stimulated cGMP production in cultured cells. In mice, intravenously and intraperitoneally administered sCorin had plasma half-lives of 3.5±0.1 and 8.3±0.3 hour, respectively. In the mouse heart failure models, intraperitoneal injection of sCorin increased plasma ANP, BNP, and cGMP levels; lowered plasma levels of NT-proANP (N-terminal-pro-ANP), angiotensin II, and aldosterone; reduced cardiac hypertrophy and fibrosis; and improved cardiac function. Conclusions We show that sCorin treatment enhanced natriuretic peptide processing and activity, suppressed the renin-angiotensin-aldosterone system, and improved cardiac morphology and function in mice with failing hearts.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio/metabolismo , Serina Endopeptidasas/farmacocinética , Función Ventricular Izquierda/fisiología , Animales , Factor Natriurético Atrial/metabolismo , Western Blotting , Cricetinae , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Péptido Natriurético Encefálico/metabolismo , Proteínas Recombinantes/farmacocinética , Función Ventricular Izquierda/efectos de los fármacos
7.
PLoS Biol ; 19(2): e3001090, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591965

RESUMEN

Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism underlying such regulation is not fully understood. Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood volume and pressure. Here, we report an unexpected role of corin in sweat glands to promote sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an important regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.


Asunto(s)
Glándulas Ecrinas/fisiología , Serina Endopeptidasas/metabolismo , Cloruro de Sodio/metabolismo , Animales , Factor Natriurético Atrial/metabolismo , Glándulas Ecrinas/metabolismo , Electrólitos/metabolismo , Folículo Piloso/metabolismo , Homeostasis/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Serina Endopeptidasas/genética , Sudor/química , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA