Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(1): 342-351, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38063083

RESUMEN

According to Hückel's rule, cyclic species are aromatic if they have 4n + 2 (n = 0, 1, 2, etc.) π electrons. However, large aromatic rings (atom number > 4) with minimum 2π electrons (i.e., n = 0) are rather rare because of the structural instability stemming from the deficient π electrons compared to the ring size. To date, the largest 2π-aromatic ring is a five-membered Ga5 core reported in a recent experiment. Herein, density functional theory calculations predicted seven inverse-sandwich Na2(MH)5 and half-sandwich Ca(MH)5 or Ca(MH)6 (M = Al, Ga or In) structures. They all have planar central five- or six-membered Al/Ga/In rings, rather negative binding energies and large HOMO-LUMO gaps. Their dianionic metal rings exhibit obvious aromatic characters and appreciable diatropic ring currents due to the good delocalization of 2π electrons donated by the Na/Ca metals. Interestingly, they also have novel collective bonding with the Na/Ca atoms interacting with both the metal ring and surrounding H atoms. These metalloaromatic rings not only greatly enrich the precious family of 2π aromatics, but also increase the maximum ring atom number from five to six, thus paving the way for Hückel-type 2π-aromatic large rings.

2.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36991761

RESUMEN

This study proposes a high-efficiency method using a co-prime circular microphone array (CPCMA) for the bearing fault diagnosis, and discusses the acoustic characteristics of three fault-type signals at different rotation speeds. Due to the close positions of various bearing components, radiation sounds are seriously mixed, and it is challenging to separate the fault features. Direction-of-arrival (DOA) estimation can be used to suppress noise and directionally enhance sound sources of interest; however, classical array configurations usually require a large number of microphones to achieve high accuracy. To address this, a CPCMA is introduced to raise the array's degrees of freedom in order to reduce the dependence on the microphone numbers and computation complexity. The estimation of signal parameters via rotational invariance techniques (ESPRIT) applied to a CPCMA can quickly figure out the DOA estimation without any prior knowledge. By using the techniques above, a sound source motion-tracking diagnosis method is proposed according to the movement characteristics of impact sound sources for each fault type. Additionally, more precise frequency spectra are obtained, which are used in combination to determine the fault types and locations.

3.
Front Plant Sci ; 13: 1026571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388498

RESUMEN

A strawberry RIPK1, a leu-rich repeat receptor-like protein kinase, is previously demonstrated to be involved in fruit ripening as a positive regulator; however, its role in vegetable growth remains unknown. Here, based on our first establishment of Agrobacterium-mediated transformation of germinating seeds in diploid strawberry by FvCHLH/FvABAR, a reporter gene that functioned in chlorophyll biosynthesis, we got FvRIPK1-RNAi mutants. Downregulation of FvRIPK1 inhibited plant morphogenesis, showing curled leaves; also, this silencing significantly reduced FvABAR and FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts. Interestingly, the downregulation of the FvCHLH/ABAR expression could not affect FvRIPK1 transcripts but remarkably reduced FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts in the contrast of the non-transgenic plants to the FvCHLH/FvABAR-RNAi plants, in which chlorophyll contents were not affected but had abscisic acid (ABA) response in stomata movement and drought stress. The distinct expression level of FvABI1 and FvABI4, together with the similar expression level of FvSnRK2.2 and FvSnRK2.6 in the FvRIPK1- and FvABAR/CHLH-RNAi plants, suggested that FvRIPK1 regulated plant morphogenesis probably by ABA signaling. In addition, FvRIPK1 interacted with FvSnRK2.6 and phosphorylated each other, thus forming the FvRIPK1-FvSnRK2.6 complex. In conclusion, our results provide new insights into the molecular mechanism of FvRIPK1 in plant growth.

4.
Front Plant Sci ; 13: 979348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061806

RESUMEN

Insects and animals are attracted to, and feed on ripe fruit, thereby promoting seed dispersal. As a vital vitamin and nutrient source, fruit make up an indispensable and enjoyable component of the human diet. Fruit ripening involves a series of physiological and biochemical changes in, among others, pigmentation, chlorophyll (Chl) degradation, texture, sugar accumulation, and flavor. Growing evidence indicates that the coordinated and ordered trait changes during fruit ripening depend on a complex regulatory network consisting of transcription factors, co-regulators, hormonal signals, and epigenetic modifications. As one of the predominant transcription factor families in plants and a downstream component of ethylene signaling, more and more studies are showing that APETALA2/ethylene responsive factor (AP2/ERF) family transcription factors act as critical regulators in fruit ripening. In this review, we focus on the regulatory mechanisms of AP2/ERFs in fruit ripening, and in particular the recent results on their target genes and co-regulators. We summarize and discuss the role of AP2/ERFs in the formation of key fruit-ripening attributes, the enactment of their regulatory mechanisms by interaction with other proteins, their role in the orchestration of phytohormone-signaling networks, and the epigenetic modifications associated with their gene expression. Our aim is to provide a multidimensional perspective on the regulatory mechanisms of AP2/ERFs in fruit ripening, and a reference for understanding and furthering research on the roles of AP2/ERF in fruit ripening.

5.
Phys Chem Chem Phys ; 24(36): 22091-22101, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36073192

RESUMEN

Cyclic species being aromatic in both the lowest singlet and triplet electronic states (so-called adaptive aromaticity) are scarce. To date, the reported systems have been mostly organometallic heterocycles with the aromaticities in the two states having the same origin of either σ- or π-electron delocalization (i.e., adaptive σ or π aromaticity). Herein, an exhaustive density functional theory study was conducted for 90 planar inorganic five-membered heterocycles in the forms of XY4 and XY2Z2 (X = O or S; Y and Z = N, P, As, Sb or Bi). They all contain 6π electrons and thus should be aromatic and antiaromatic in the lowest singlet and triplet states, respectively, according to classical Hückel's 4n + 2 and Baird's 4n π-electron rules. To our surprise, however, several of them (e.g., ON2As2, ON2Bi2 and SAs2Sb2) exhibit considerable aromatic characters in both S0 and T1 states, as confirmed by multiple aromaticity indices. More interestingly, further analyses reveal that their aromaticities in the two states may unprecedentedly stem from both σ- and π-electron delocalization. Thus, they likely bear unusual adaptive σ + π dual aromaticity. By finding adaptive aromatics in rather simple inorganic unsaturated systems, our work extends this emerging aromaticity concept to the big inorganic world.

6.
Comput Math Methods Med ; 2022: 2517463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872948

RESUMEN

Isoflurane (ISO) is a type of anesthetic that might cause neurotoxicity in children. Although miR-424-5p is considerably downregulated in ISO-treated rat brain samples, its physiological role in ISO-induced neuronal injury in human embryonic stem cell-derived neurons remains unknown (hESC-derived neurons). miR-424-5p expression and fatty acid synthase (FASN) in ISO-treated hESC-derived neurons were tested via qRT-PCR. The amount of protein for Bax, Cleaved-caspase-8, Bcl-2, and FASN was investigated through western blot analysis. The viability and apoptosis of hESC-derived neurons were estimated through cell counting kit-8 assessment and TUNEL assay, accordingly. Superoxide dismutase, glutathione, and malondialdehyde levels were discovered via corresponding kits. The contents of inflammatory factors including interleukin-6 and tumor necrosis factor-α were examined by enzyme-linked immunosorbent assays. The combination between FASN and miR-424-5p was resolute via dual-luciferase reporter assessment. After exposure to ISO, induced neurotoxicity and a decreased miR-424-5p production were identified in hESC-derived neurons. Upregulation of miR-424-5p repressed ISO-induced apoptosis and mitigated ISO-induced inflammatory response and oxidative stress in vitro. FASN expression levels were reduced by elevation of miR-424-5p and upregulated after ISO treatment. Mechanically, FASN was directly targeted by miR-424-5p in hESC-derived neurons. Of note, the miR-424-5p elevation-suppressed neuronal apoptosis, inflammatory response, and oxidative stress were countered by upregulation of FASN.


Asunto(s)
Anestesia , Acido Graso Sintasa Tipo I , Isoflurano , MicroARNs , Neuronas , Apoptosis/genética , Acido Graso Sintasa Tipo I/metabolismo , Células Madre Embrionarias Humanas , Humanos , Isoflurano/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología
7.
Comput Math Methods Med ; 2022: 6018037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799645

RESUMEN

Background: Propofol (PPF) has been shown in studies to cause cognitive impairment and neuronal cell death in developing animals. PPF has been demonstrated to decrease the expression of microRNA-17-5p (miR-17-5p) in a recent study. Nonetheless, the function of miR-17-5p in PPF-induced neurotoxicity and related mechanisms is uncharacterized. Methods: After the induction of neurotoxicity by treating the SH-SY5Y cells with PPF, qRT-PCR was conducted to evaluate the level of miR-17-5p. Using MTT and flow cytometry, cell viability and apoptosis rate were assessed, respectively. Interaction between miR-17-5p and BCL2 like 11 was (BCL2L11) studied using a Luciferase reporter assay. With the help of western blot analysis, we determined the level of proteins of apoptosis-related genes and autophagy-related markers. Results: In SH-SY5Y cells, PPF treatment induced neurotoxicity and downregulated miR-17-5p expression. In SH-SY5Y cells post-PPF exposure, overexpression of miR-17-5p increased cell viability and decreased apoptosis. Consistently, miR-17-5p mimics mitigated PPF-generated autophagy via inhibition of Atg5, Beclin1, and LC3II/I level and elevation of p62 protein expression. In addition, BCL2L11, which was highly expressed in PPF-treated SH-SY5Y cells, was directly targeted by miR-17-5p. Further, in PPF-treated SH-SY5Y cells, overexpressed BCL2L11 counteracted the suppressing behavior of miR-17-5p elevation on PPF-induced apoptosis. Conclusion: Overexpressed miR-17-5p alleviates PPF exposure-induced neurotoxicity and autophagy in SH-SY5Y cells via binding to BCL2L11, suggesting the possibility that miR-17-5p can serve as a candidate in the treatment of neurotoxicity (caused by PPF).


Asunto(s)
Anestesia , Proteína 11 Similar a Bcl2 , MicroARNs , Neuroblastoma , Propofol , Apoptosis/genética , Autofagia/genética , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Humanos , MicroARNs/genética , Propofol/farmacología
8.
Inorg Chem ; 61(15): 5891-5902, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35381176

RESUMEN

For endohedral metallofullerenes (EMFs), a central issue is how to correctly describe the intracluster and metal-cage interactions, which are critical for understanding their structures, stabilities, and various properties. In this work, density functional theory calculations were carried out for 13 La-based EMFs covering all four reported types and a rather wide cage size range (C32-C104). The results reveal that the usually core-like lanthanide 4f subshell may play a critical role in the structural characteristics, energetic stabilities, frontier orbital energy levels, metal charges, and chemical reactivities of these endofullerenes. Regardless of the encapsulated forms, the La-4f contributions to the chemical bonding and structural stability increase with the reduced cage sizes because of the gradually enhanced cage confinement. The combination of metal-to-nonmetal charge transfer and compression of the cage cavity exposes and effectively activates the otherwise chemically inert 4f orbitals. By disclosing the important role of long-neglected metal orbitals inside fullerenes, the current work not only deepens our understanding of EMFs, but also provides new insights into the chemical bondings in general confined spaces at the subnanometer scale.

9.
Inorg Chem ; 60(12): 8621-8630, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096260

RESUMEN

Heavy alkaline earth metals (Aes) are usually considered to engage in chemical bonding by donating the two electrons on ns atomic orbitals (AOs). In this work, a series of typical endohedrally doped cage clusters Ae@cage (Ae = Ca, Sr, Ba; cage = C32, C74, C94, B40, Si20, Sn12, Au16) were thoroughly investigated by means of density functional theory calculations. We found that their occupied molecular orbitals have ∼1 to 14% contributions from Ae-(n - 1)d AOs due to electron back-donation from the cage. Though the amount is small, it is hard to ignore: with the d orbitals, all these endohedral clusters exhibit obviously shortened Ae-cage distances, greatly enhanced encapsulation stabilities, changed highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, and much lowered Ae valences far from ideal +2. Evidently, the valence orbitals of Ca/Sr/Ba in these systems should include both ns and (n - 1)d. By disclosing the critical role of unnoticed metal orbitals, our work provides completely new insights into the cluster field.

10.
Inorg Chem ; 60(9): 6492-6502, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33881859

RESUMEN

The reported actinide-based endohedral clusterfullerenes (ECFs) are rather scarce thus far. Though several members have been detected in mass spectra, their exact structures and properties mostly remain unclear. Herein, density functional theory calculations revealed that the U2O@C72 observed in recent experiments should be U2O@D2(10611)-C72, U2O@C1(10610)-C72, or U2O@Cs(10616)-C72. Featuring two pairs of fused pentagons, their outer cages all break the well-known isolated pentagon rule. U2O@D2(10611)-C72 is the first clusterfullerene based on the D2(10611)-C72 cage, which only encapsulated dimetals (Sc2, La2, Ce2, Pr2) before. It is also the first time to reveal that C1(10610)-C72 and Cs(10616)-C72 can serve as the parent cage of an endohedral fullerene. Interestingly, the three isomers could interconvert with each other via Stone-Wales transformation with one internal U atom dynamically changing its orientation according to the position of pentagon adjacencies. A common electronic structure of (U4+)2(O)2-@C726- can be formally assigned to the three ECFs but with obvious covalent character for both U-O and U-C bonds. Their spatially extended U-5f orbitals substantially enhance the metal-cage interactions. Their various spectra were also simulated to assist future experiments. Moreover, our work shows that the careful choice of exchange-correlation functionals is rather critical for the structural characterization of ECFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...