Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 11(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39195787

RESUMEN

Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets.

2.
Front Microbiol ; 12: 734389, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539619

RESUMEN

The study investigated the impact of fermented cottonseed meal (FCSM) on growth performance, immunity and antioxidant properties, nutrient digestibility, and gut microbiota of weaned piglets by replacing soybean meal with FCSM in the diet. The experimental piglets were fed with either the soybean meal diet (SBM group) or fermented cottonseed meal diet (FCSM group) for 14days after weaning. The digestibility of dry matter (DM), organic matter (OM), crude protein (CP), gross energy (GE), amino acids and nitrogen was higher in the FCSM diet than those in the SBM diet (p<0.05). The piglets in the FCSM group showed greater growth performance and lower diarrhea rate than those in the SBM group (p<0.05). The concentration of serum immunoglobulin G (IgG) and antioxidase, intestinal and hepatic antioxidase were increased and the concentration of malondialdehyde (MDA) in the serum was decreased in those piglets in the FCSM group compared to those piglets in the SBM group (p<0.05). The piglets in the FCSM group had a higher concentration of volatile fatty acids (VFAs) in their ileum and cecum and a higher Simpson index of ileum than piglets in the SBM group (p<0.05). The relative abundance of Lactobacillus and [Ruminococcus]_torques_group in ileum and Intestinibacter, norank_f_Muribaculaceae, unclassified_o_Lactobacillales and [Eubacterium]_coprostanoligenes_group in cecum were enhanced in piglets fed with the FCSM diet, whereas the relative abundance of Sarcina and Terrisporobacter were increased in piglets fed with the SBM diet. Overall, FCSM replacing SBM improved the growth performance, immunity and antioxidant properties, and nutrient digestibility; possibly via the alterant gut microbiota and its metabolism of weaned piglets. Graphical AbstractFermented cottonseed meal as a partial replacement for soybean meal could improve the growth performance, immunity and antioxidant properties, and nutrient digestibility by altering the gut microbiota profile of weaned piglets. SBM, soybean meal; FCSM, fermented cottonseed meal.

3.
Sci Total Environ ; 800: 149596, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426337

RESUMEN

For the ruminant animal industry, the emission of nitrogenous substances, such as nitrous oxide (N2O) and ammonia (NH3), not only challenges environmental sustainability but also restricts its development. The metabolism of proteins and amino acids by rumen microorganisms is a key factor affecting nitrogen (N) excretion in ruminant animals. Rumen microorganisms that affect N excretion mainly include three types: proteolytic and peptidolytic bacteria (PPB), ureolytic bacteria (UB), and hyper-ammonia-producing bacteria (HAB). Microbes residing in the rumen, however, are influenced by several complex factors, such as diet, which results in fluctuations in the rumen metabolism of proteins and amino acids and ultimately affects N emission. Combining feed nutrition strategies (including ingredient adjustment and feed additives) and ecological mitigation strategies of N2O and NH3 in industrial practice can reduce the emission of nitrogenous pollutants from the ruminant breeding industry. In this review, the characteristics of the rumen microbial community related to N metabolism in ruminants were used as the metabolic basis. Furthermore, an effective strategy to increase N utilisation efficiency in combination with nutrition and ecology was reviewed to provide an inside-out approach to reduce N emissions from ruminants.


Asunto(s)
Nitrógeno , Rumen , Aminoácidos , Alimentación Animal/análisis , Animales , Dieta , Rumiantes
4.
Anim Nutr ; 7(1): 72-83, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33997334

RESUMEN

This study investigated the effects of isomaltooligosaccharide (IMO) and Bacillus in perinatal diets on the duration of farrowing and post-weaning estrus, serum reproductive hormone concentrations, and gut microbiota and its metabolites of sows. Multiparous sows (n = 130) were fed diets without IMO (control, CON group), or diets containing only IMO (IMO group), IMO and Bacillus subtilis (IMOS group), IMO and Bacillus licheniformis (IMOL group), and IMO and B. subtilis and B. licheniformis (IMOSL group), respectively. The results indicate that the duration of farrowing and post-weaning estrus was shorter in sows in the IMOS, IMOL, and IMOSL groups, and the weaning-estrous interval was lower in sows in the IMOL greoup. In addition, the lowest fecal score was observed in the IMOL group during d 106 to 112 of gestation. Sows in most of the treatment groups had a higher concentration of serum prolactin and prostaglandin at farrowing, but a lower serum concentration of estradiol, oxytocin, and progesterone on d 18 of lactation than sows in the CON group. The treatment groups had a higher abundance of Candidatus Methanoplasma and Bacillus and a lower abundance of Escherichia-Shigella in their feces at farrowing. Furthermore, the treatment groups had higher concentrations of total short-chain fatty acids (SCFA) in feces at farrowing and a higher concentration of branched fatty acids in feces on d 18 of lactation. Furthermore, the abundance of Bacillus in feces was positively correlated with serum prostaglandin concentrations and fecal total SCFA of sows at farrowing, but was negatively correlated with the duration of farrowing. Overall, dietary IMO and Bacillus supplementation affected the concentration of serum reproductive hormones and the duration of farrowing and post-weaning estrus, and the gut microbiota is a key factor.

5.
Front Microbiol ; 11: 593056, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324372

RESUMEN

The study investigated the impact of dietary montmorillonite on the growth performance, intestinal mucosal barrier, and microbial community in weaned piglets with control group (CON) and dietary supplementation of 0.2% montmorillonite (0.2% M). Compared with the CON group, 0.2% M feed in the diet increased the average daily gain (ADG) on days 15-35 and day 1-35 and the average daily feed intake on days 1-35 (ADFI) (0.05 < P < 0.1). Besides, higher villus height of the duodenum and jejunum and lower crypt depth of duodenum and colon were revealed in the 0.2% M group than in the CON group (P < 0.05). Moreover, the V/C (ratio of the villus height and crypt depth) in the 0.2% M group was increased compared to that in the CON group both from the duodenum and ileum (P < 0.05). The relative mRNA expression of mucin-1, ITGB1 (ß1-integrins), and PKC (protein kinase C) of ileum in the 0.2% M group were upregulated (P < 0.05) compared to that in the CON group. The digesta sample of ileum from piglets in the 0.2% M group contained greater (P < 0.05) intestinal bacterial diversity and abundances of probiotics, such as Streptococcus, Eubacterium_rectale_group, and Lactobacillus, which could promote the synthesis of carbon-containing biomolecules. Overall, dietary supplementation of 0.2% M was shown to have a tendency to improve the growth performance of weaned piglets and may enhance their intestinal mucosal barrier function via altering the gut microbiota.

6.
Anim Reprod Sci ; 219: 106531, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32828406

RESUMEN

In this study there was evaluation of effects of dietary inulin during late gestation on sow physiology, farrowing duration and piglet performance. At day 80 of gestation sows were randomly assigned to four groups:basal diet (CON); or basal diet with 0.8 %; 1.6 %; or 2.4 % inulin. The feeding of the diet with 1.6 % inulin resulted in larger weights of the litter at birth a shorter duration of the farrowing period, lesser average birth interval between piglets, lesser number of piglets dead at birth, and fewer piglets/sow dead at birth (P < 0.05). When sows were fed 0.8 % and 1.6 % IN, there was a larger litter weight at weaning, sow average daily feed intake and piglet average daily gain during lactation compared with values for these variables in the CON group (P <  0.05). Additionally, there was an increase in serum concentration of free fatty acid, total cholesterol, and high-density lipoprotein cholesterol with increasing amounts of inulin in the diet (linear, P <  0.05). Sows fed 1.6 % IN had greater serum concentrations of glucose than those in the CON group (P <  0.05). Furthermore, there was a linear increase in serum activity of total antioxidant capacity, total superoxide dismutase and glutathione peroxidase with increasing amounts of inulin in the diet (P <  0.05). In conclusion, results of the present study indicated feeding inulin during late gestation improved reproductive performance of sows, thus, may be a novel additive for the pig industry in improving efficiency of pork production.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Inulina/farmacología , Parto/efectos de los fármacos , Preñez , Porcinos/fisiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Composición Corporal/efectos de los fármacos , Dieta , Suplementos Dietéticos , Femenino , Edad Gestacional , Lactancia/fisiología , Tamaño de la Camada/efectos de los fármacos , Fenómenos Fisiologicos Nutricionales Maternos/efectos de los fármacos , Embarazo , Preñez/efectos de los fármacos , Destete
7.
Front Microbiol ; 11: 588986, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488538

RESUMEN

To investigate the effects of dietary isomaltooligosaccharide (IMO) levels on the gut microbiota, immune function of sows, and the diarrhea rate of their offspring, 120 multiparous gestating pig improvement company (PIC) sows with similar body conditions were selected and fed 1 of 6 diets: a basal diet with no supplement (control, CON), or a diet supplemented with 2.5 g/kg, 5.0 g/kg, 10.0 g/kg, 20.0 g/kg, or 40.0 g/kg IMO (IMO1, IMO2, IMO3, IMO4, or IMO5 group, respectively). Results showed that dietary treatments did not affect the reproductive performance and colostrum composition of sows (P > 0.05). However, compared to the CON, IMO reduced the diarrhea rate of suckling piglets (P < 0.05) and improved the concentrations of colostrum IgA, IgG, and IgM (P < 0.05). Moreover, IMO decreased the concentrations of serum D-lactate (D-LA) and lipopolysaccharides (LPS) at farrowing and day 18 of lactation (L18) (P < 0.05). High-throughput pyrosequencing of the 16S rRNA demonstrated that IMO shaped the composition of gut microbiota in different reproductive stages (day 107 of gestation, G107; day 10 of lactation, L10) (P < 0.05). At the genus level, the relative abundance of g_Parabacteroides and g_Slackia in G107 and g_Unclassified_Peptostreptococcaceae, g_Turicibacter, g_Sarcina, and g_Coprococcus in L10 was increased in IMO groups but the g_YRC22 in G107 was decreased in IMO groups relative to the CON group (P < 0.05). Furthermore, the serum D-LA and LPS were negatively correlated with the genus g_Akkermansia and g_Parabacteroides but positively correlated with the genus g_YRC22 and g_Unclassified_Peptostreptococcaceae. Additionally, the colostrum IgA, IgG, and IgM of sows were positively correlated with the genus g_Parabacteroides, g_Sarcina, and g_Coprococcus but negatively correlated with the genus g_YRC22. These findings indicated that IMO could promote the immune activation and had a significant influence in sows' gut microbiota during perinatal period, which may reduce the diarrhea rate of their offspring.

8.
Front Immunol ; 10: 2800, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921106

RESUMEN

Background: Accumulating data support the fact that the gut microbiota plays an important role in the progression of obesity and its related metabolic disease. Sex-related differences are an important consideration in the study of gut microbiota. Polyphenols can regulate gut microbiota, thereby improving obesity and its associated complications. There have been no studies conducted on the ability of honokiol (HON, an extract from Chinese herbal medicine) to regulate gut microbiota. The aim of this study was to examine whether HON supplementation would improve obesity by regulating the gut microbiota and its related metabolite levels, and whether there were sex-based differences in high-fat diet-induced obese mice. Methods: C57BL/6 mice (n = 120) were fed a normal chow diet (ND group), high-fat diet (HFD group), or HFD plus HON at 200, 400, and 800 mg/kg BW for 8 weeks. Body weight, adipose tissue weight, adipocyte diameter, insulin resistance, blood lipid and serum inflammatory cytokines, gut microbiota, and its metabolite were examined at the end of the experiment. Results: The HON supplementation reduced body weight, adipose tissue weight, adipocyte diameter, insulin resistance, blood lipid, and serum inflammatory cytokine levels in HFD-fed mice, and this effect was significant in the high-dose group. In addition, HON not only reversed gut disorders in HFD-fed mice, such as by enhanced the abundance of Akkermansia and short-chain fatty acids (SCFAs) producing Bacteroides and reduced Oscillospira, but also improved the SCFAs and endotoxin (LPS) levels, although there were sex-based differences. The correlation between several specific genera and obesity-related indexes was revealed through Spearman's correlation analysis. Moreover, HON may have dose-dependent effects on regulating gut microbiota to alleviate obesity. Conclusions: These findings suggest that HON can prevent diet-induced obesity and its associated diseases by regulating the gut microbiota and improving microbial metabolite levels. Moreover, our findings indicate that sex may be an important factor affecting HON activity.


Asunto(s)
Compuestos de Bifenilo/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Lignanos/uso terapéutico , Obesidad/prevención & control , Tejido Adiposo/efectos de los fármacos , Animales , Dieta Alta en Grasa , Femenino , Inflamación/prevención & control , Resistencia a la Insulina , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...