Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(21): 6768-6777, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37871325

RESUMEN

Transient receptor potential vanilloid 5 (TRPV5) is a calcium-selective TRP channel that plays a crucial role in calcium homeostasis regulation. However, there are still many issues that need to be addressed, such as the specific conformational transition of TRPV5 and the specific functions of each structure in cation gating. Here, we build a model of the calcium ion transport protein from Xenopus oocytes in the presence of the lipid membrane and water molecules. Due to the activation process of ion channels are global and collective, coarse-grained molecular dynamics (CG-MD) simulations of the potential of mean force along the conformational transition pathway are performed. The CG-MD simulations show that the S6 helix plays a vital role in the TRPV5 conformational transition. Most importantly, these simulated trajectories indicate that the activation of ion channels happens before the extension and rotation of S6 helices, revealing that TRPV5 has a unique gating mechanism different from TRPV6. The present work demonstrates how the mechanical force acting on the S6 helix opens the TRPV5 channel gates. These results deepen our understanding of the TRPV5 gating mechanism.


Asunto(s)
Calcio , Simulación de Dinámica Molecular , Calcio/metabolismo , Conformación Molecular , Canales de Calcio/química , Canales Catiónicos TRPV
2.
Sci Rep ; 13(1): 11483, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460748

RESUMEN

Multi-parameter control of light is a key functionality to modulate optical signals in photonic integrated circuits for various applications. However, the traditional optical modulators can only control one or two properties of light at the same time. Herein, we propose a hybrid structure which can modulate the amplitude, wavelength and phase of surface plasmon polaritons (SPPs) simultaneously to overcome these limitations. The numerical results show that when the Fermi level of graphene changes from 0.3 to 0.9 eV, the variation of optical transmission, wavelength and phase are 32.7 dB, 428 nm and 306°, respectively. The demonstrated structure triggers an approach for the realization of ultracompact modulation and has potential applications in the fields of optical switches, communications and photo-detection.

3.
Appl Opt ; 61(25): 7301-7306, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256026

RESUMEN

To keep pace with the demands in optical communications, electro-optic modulators should feature a high extinction ratio, offer a small footprint, and allow for practical detection. Herein, we demonstrate a compact plasmon modulator with a high extinction ratio where a compact modulation region composed of indium tin oxide (ITO) is embedded to the arms of the Mach-Zehnder (M-Z) interferometer. The modulator has a footprint of 20µm×12µm with a modulation region of 4µm×0.5µm. The numerical results show that the extinction ratio is 15.2 dB when the electron concentration of ITO is changed 4×1020cm-3. This type of modulator paves the way for future compact optoelectronic integration and has potential application in the fields of optical communication, photodetection, and sensing.

4.
Sci Rep ; 12(1): 5229, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347176

RESUMEN

The manipulation of surface plasmon polaritons plays a pivotal role in plasmonic science and technology, however, the modulation efficiency of the traditional method suffers from the weak light-matter interaction. Herein, we propose a new method to overcome this obstacle by directly controlling the couple of photon and electron. In this paper, a hybrid graphene-dielectric- interdigital electrode structure is numerically and experimentally investigated. The plasmon is excited due to the confined carrier which is regulated by the potential wells. The frequency of plasmon can be tuned over a range of ~ 33 cm-1, and the obtained maximum extinction ratio is 8% via changing the confined area and the density of carrier. These findings may open up a new path to design the high efficiency all-optical modulator because the electrons can also be driven optically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...