Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475216

RESUMEN

This study introduces a novel nonlinear dynamic analysis method, known as beluga whale optimization-slope entropy (BWO-SlEn), to address the challenge of recognizing sea state signals (SSSs) in complex marine environments. A method of underwater acoustic signal recognition based on BWO-SlEn and one-dimensional convolutional neural network (1D-CNN) is proposed. Firstly, particle swarm optimization-slope entropy (PSO-SlEn), BWO-SlEn, and Harris hawk optimization-slope entropy (HHO-SlEn) were used for feature extraction of noise signal and SSS. After 1D-CNN classification, BWO-SlEn were found to have the best recognition effect. Secondly, fuzzy entropy (FE), sample entropy (SE), permutation entropy (PE), and dispersion entropy (DE) were used to extract the signal features. After 1D-CNN classification, BWO-SlEn and 1D-CNN were found to have the highest recognition rate compared with them. Finally, compared with the other six recognition methods, the recognition rates of BWO-SlEn and 1D-CNN for the noise signal and SSS are at least 6% and 4.75% higher, respectively. Therefore, the BWO-SlEn and 1D-CNN recognition methods proposed in this paper are more effective in the application of SSS recognition.

2.
Plant Physiol ; 193(4): 2848-2864, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37723123

RESUMEN

The gibberellins (GAs) receptor GA INSENSITIVE DWARF1 (GID1) plays a central role in GA signal perception and transduction. The typical photoperiodic plant chrysanthemum (Chrysanthemum morifolium) only flowers when grown in short-day photoperiods. In addition, chrysanthemum flowering is also controlled by the aging pathway, but whether and how GAs participate in photoperiod- and age-dependent regulation of flowering remain unknown. Here, we demonstrate that photoperiod affects CmGID1B expression in response to GAs and developmental age. Moreover, we identified PHOTOLYASE/BLUE LIGHT RECEPTOR2, an atypical photocleavage synthase, as a CRYPTOCHROME-INTERACTING bHLH1 interactor with which it forms a complex in response to short days to activate CmGID1B transcription. Knocking down CmGID1B raised endogenous bioactive GA contents and GA signal perception, in turn modulating the expression of the aging-related genes MicroRNA156 and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3. We propose that exposure to short days accelerates the juvenile-to-adult transition by increasing endogenous GA contents and response to GAs, leading to entry into floral transformation.


Asunto(s)
Chrysanthemum , Desoxirribodipirimidina Fotoliasa , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/fisiología , Fotoperiodo , Percepción , Regulación de la Expresión Génica de las Plantas
3.
Plant J ; 112(5): 1159-1175, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36214418

RESUMEN

Chrysanthemum (Chrysanthemum morifolium) is well known as a photoperiod-sensitive flowering plant. However, it has also evolved into a temperature-sensitive ecotype. Low temperature can promote the floral transition of the temperature-sensitive ecotype, but little is known about the underlying molecular mechanisms. Here, we identified MADS AFFECTING FLOWERING 2 (CmMAF2), a putative MADS-box gene, which induces floral transition in response to low temperatures independent of day length conditions in this ecotype. CmMAF2 was shown to bind to the promoter of the GA biosynthesis gene CmGA20ox1 and to directly regulate the biosynthesis of bioactive GA1 and GA4 . The elevated bioactive GA levels activated LEAFY (CmLFY) expression, ultimately initiating floral transition. In addition, CmMAF2 expression in response to low temperatures was directly activated by CmC3H1, a CCCH-type zinc-finger protein upstream. In summary, our results reveal that the CmC3H1-CmMAF2 module regulates flowering time in response to low temperatures by regulating GA biosynthesis in the temperature-sensitive chrysanthemum ecotype.


Asunto(s)
Chrysanthemum , Chrysanthemum/fisiología , Giberelinas/metabolismo , Temperatura , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotoperiodo
4.
Plant Sci ; 322: 111290, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35753140

RESUMEN

The carotenoids biosynthesis pathway in plants has been studied extensively, yet little is known about the regulatory mechanisms underlying this process, especially for ornamental horticulture plants. In this study, a natural variation of chrysanthemum with orange coloration was identified and compared with the wild type with pink coloration; the content and component of carotenoids were largely enriched in the mutant with orange coloration. CmCCD4a-5, the DNA sequence in both 'Pink yan' and the mutant, was identified and shown to function as a carotenoid degradation enzyme. Compared with 'Pink yan', the mutant shows lower expression level of CmCCD4a-5. Furthermore, CmGATA4 was found to have an opposite expression trend to CmCCD4a-5, and it could directly bind with the CmCCD4a-5 promoter. Taken together, this study demonstrates that CmGATA4 acts as a negative regulator of CmCCD4a-5 and, furthermore, low expression of CmCCD4a-5 resulted in carotenoid accumulation in the mutant.


Asunto(s)
Chrysanthemum , Citrus sinensis , Carotenoides/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Citrus sinensis/metabolismo , Color , Flores/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Pigmentación/genética
5.
Molecules ; 26(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885694

RESUMEN

Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.


Asunto(s)
Chrysanthemum/química , Té/química , Tés de Hierbas/análisis , Compuestos Orgánicos Volátiles/química , Camellia sinensis/química , Aromatizantes/química , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Movilidad Iónica , Análisis de Componente Principal , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/aislamiento & purificación
6.
Plant Sci ; 305: 110824, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33691959

RESUMEN

Apple (Malus domestica) exhibits classic S-RNase-mediated gametophytic self-incompatibility. Previous studies have shown that the S-RNase secreted from style cells could trigger signal transduction and defense responses mediated by Ca2+ and reactive oxygen species (ROS) after entering into the pollen tube. In this study, we investigated the downstream genes activated by ROS during S-RNase-mediated gametophytic self-incompatibility in pollen tubes. A substantial increase in ROS, as well as up-regulated expression of a serine-threonine protein kinase gene, OXIDATIVE SIGNAL-INDUCIBLE1 (MdOXI1), was detected in apple pollen tubes treated with self-S-RNase. A kinase assay-linked phosphoproteomics (KALIP) analysis suggested that MdOXI1 could bind and phosphorylate the downstream protein kinase Pto-interacting protein 1-like (MdPTI1L). The phosphorylation level of MdPTI1L was significantly reduced after silencing MdOXI1 with antisense oligonucleotides in the pollen tube. Silencing of either MdOXI1 or MdPTI1L alleviated the inhibitory effect of self-S-RNase on pollen tube growth. Our results thus indicate that MdPTI1L is phosphorylated by MdOXI1 in the pollen tube and participates in the ROS signaling pathway triggered by S-RNase.


Asunto(s)
Malus/genética , Malus/fisiología , Fosforilación/fisiología , Fosfotransferasas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Transducción de Señal/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Polinización/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ribonucleasas/metabolismo
7.
Plant J ; 106(2): 351-365, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33486798

RESUMEN

Lotus plumule, the embryo of the seed of the sacred lotus (Nelumbo nucifera), contains a high accumulation of secondary metabolites including flavonoids and possesses important pharmaceutical value. Flavonoid C-glycosides, which accumulate exclusively in lotus plumule, have attracted considerable attention in recent decades due to their unique chemical structure and special bioactivities. As well as mono-C-glycosides, lotus plumule also accumulates various kinds of di-C-glycosides by mechanisms which are as yet unclear. In this study we identified two C-glycosyltransferase (CGT) genes by mining sacred lotus genome data and provide in vitro and in planta evidence that these two enzymes (NnCGT1 and NnCGT2, also designated as UGT708N1 and UGT708N2, respectively) exhibit CGT activity. Recombinant UGT708N1 and UGT708N2 can C-glycosylate 2-hydroxyflavanones and 2-hydroxynaringenin C-glucoside, forming flavone mono-C-glycosides and di-C-glycosides, respectively, after dehydration. In addition, the above reactions were successfully catalysed by cell-free extracts from tobacco leaves transiently expressing NnCGT1 or NnCGT2. Finally, enzyme assays using cell-free extracts of lotus plumule suggested that flavone di-C-glycosides (vicenin-1, vicenin-3, schaftoside and isoschaftoside) are biosynthesized through sequentially C-glucosylating and C-arabinosylating/C-xylosylating 2-hydroxynaringenin. Taken together, our results provide novel insights into the biosynthesis of flavonoid di-C-glycosides by proposing a new biosynthetic pathway for flavone C-glycosides in N. nucifera and identifying a novel uridine diphosphate-glycosyltransferase (UGT708N2) that specifically catalyses the second glycsosylation, C-arabinosylating and C-xylosylating 2-hydroxynaringenin C-glucoside.


Asunto(s)
Flavonoides/metabolismo , Glicósidos/metabolismo , Nelumbo/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Redes y Vías Metabólicas , Nelumbo/enzimología , Nelumbo/genética , Filogenia , Plantas Modificadas Genéticamente , Nicotiana
8.
J Sep Sci ; 42(18): 2888-2899, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31282097

RESUMEN

Elm fruits were once an important food source in the years of famine. Research on the functional compounds in elm fruits was almost unavailable. In this study, we established an efficient high-performance liquid chromatography method for the simultaneous separation of eight chlorogenic acids and 28 flavonoids in elm fruits for the first time. Total flavonoid contents ranged from 286 mg/100 g (Ulmus laciniata) to 1228 mg/100 g (U. pumila). High concentrations of rutin, quercetin 3-O-glucoside, and kaempferol derivatives were present in U. laevis, U. castaneifolia, and U. pumila, respectively. Furthermore, the fruit extracts of U. americana, U. castaneifolia, U. davidiana, and U. pumila showed higher antioxidant activity. These results suggest that fruits of these species can be used as bioresources for the extraction of the corresponding functional compounds. This work provides informative data and can be an important reference for future research on elm fruits as a renewed food resource.


Asunto(s)
Antioxidantes/análisis , Ácido Clorogénico/análisis , Flavonoides/análisis , Frutas/química , Ulmus/química , Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Ácido Clorogénico/farmacología , Flavonoides/farmacología , Picratos/antagonistas & inhibidores , Ácidos Sulfónicos/antagonistas & inhibidores
9.
J Exp Bot ; 70(18): 4749-4762, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31106836

RESUMEN

Flavonoids are secondary metabolites widely distributed among angiosperms, where they play diverse roles in plant growth, development, and evolution. The regulation of flavonoid biosynthesis in plants has been extensively studied at the transcriptional level, but post-transcriptional, translational, and post-translational control of flavonoid biosynthesis remain poorly understood. In this study, we analysed post-translational regulation of flavonoid biosynthesis in the ornamental plant Paeonia, using proteome and ubiquitylome profiling, in conjunction with transcriptome data. Three enzymes involved in flavonoid biosynthesis were identified as being putative targets of ubiquitin-mediated degradation. Among these, chalcone synthase (PhCHS) was shown to have the greatest number of ubiquitination sites. We examined PhCHS abundance in petals using PhCHS-specific antibody and found that its accumulation decreased at later developmental stages, resulting from 26S proteasome-mediated degradation. We further identified a ring domain-containing protein (PhRING-H2) that physically interacts with PhCHS and demonstrated that PhRING-H2 is required for PhCHS ubiquitination. Taken together, our results suggest that PhRING-H2-mediates PhCHS ubiquitination and degradation is an important mechanism of post-translational regulation of flavonoid biosynthesis in Paeonia, providing a theoretical basis for the manipulation of flavonoid biosynthesis in plants.


Asunto(s)
Aciltransferasas/metabolismo , Paeonia/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinación , Flores/química , Flores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Plant Biotechnol J ; 17(11): 2184-2198, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31001872

RESUMEN

Apple exhibits S-RNase-mediated self-incompatibility. Although the cytotoxic effect of S-RNase inside the self-pollen tube has been studied extensively, the underlying defence mechanism in pollen tube in Rosaceae remains unclear. On exposure to stylar S-RNase, plant defence responses are activated in the pollen tube; however, how these are regulated is currently poorly understood. Here, we show that entry of both self and non-self S-RNase into pollen tubes of apple (Malus domestica) stimulates jasmonic acid (JA) production, in turn inducing the accumulation of MdMYC2 transcripts, a transcription factor in the JA signalling pathway widely considered to be involved in plant defence processes. MdMYC2 acts as a positive regulator in the pollen tube activating expression of MdD1, a gene encoding a defence protein. Importantly, MdD1 was shown to bind to the RNase activity sites of S-RNase leading to inhibition of enzymatic activity. This work provides intriguing insights into an ancient defence mechanism present in apple pollen tubes where MdD1 likely acts as a primary line of defence to inhibit S-RNase cytotoxicity prior to self/non-self recognition.


Asunto(s)
Malus/genética , Proteínas de Plantas/genética , Tubo Polínico/crecimiento & desarrollo , Ribonucleasas , Autoincompatibilidad en las Plantas con Flores , Tioninas/genética
11.
Plant Cell Physiol ; 60(3): 599-611, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496505

RESUMEN

Flower color patterns play critical roles in plant-pollinator interactions and represent one of the most common adaptations during angiosperm evolution. However, the molecular mechanisms underlying flower color pattern formation are less understood in non-model organisms. The aim of this study was to identify genes involved in the formation of petal blotches in tree peony (Paeonia suffruticosa) through transcriptome profiling and functional experiments. We identified an R2R3-MYB gene, PsMYB12, representing a distinct R2R3-MYB subgroup, with a spatiotemporal expression pattern tightly associated with petal blotch development. We further demonstrated that PsMYB12 interacts with a basic helix-loop-helix (bHLH) and a WD40 protein in a regulatory complex that directly activates PsCHS expression, which is also specific to the petal blotches. Together, these findings advance our understanding of the molecular mechanisms of pigment pattern formation beyond model plants. They also benefit molecular breeding of tree peony cultivars with novel color patterns and promote germplasm innovation.


Asunto(s)
Paeonia/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Paeonia/genética , Factores de Transcripción/genética
12.
Plant Cell ; 30(8): 1924-1942, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30065047

RESUMEN

Apple leaf spot caused by the Alternaria alternata f. sp mali (ALT1) fungus is one of the most devastating diseases of apple (Malus × domestica). We identified a hairpin RNA (hpRNA) named MdhpRNA277 that produces small RNAs and is induced by ALT1 infection in 'Golden Delicious' apple. MdhpRNA277 produces mdm-siR277-1 and mdm-siR277-2, which target five resistance (R) genes that are expressed at high levels in resistant apple variety 'Hanfu' and at low levels in susceptible variety 'Golden Delicious' following ALT1 infection. MdhpRNA277 was strongly induced in 'Golden Delicious' but not 'Hanfu' following ALT1 inoculation. MdhpRNA277 promoter activity was much stronger in inoculated 'Golden Delicious' versus 'Hanfu'. We identified a single-nucleotide polymorphism (SNP) in the MdhpRNA277 promoter region between 'Golden Delicious' (pMdhpRNA277-GD) and 'Hanfu' (pMdhpRNA277-HF). The transcription factor MdWHy binds to pMdhpRNA277-GD, but not to pMdhpRNA277-HF Transgenic 'GL-3' apple expressing pMdhpRNA277-GD:MdhpRNA277 was more susceptible to ALT1 infection than plants expressing pMdhpRNA277-HF:MdhpRNA277 due to induced mdm-siR277 accumulation and reduced expression of the five target R genes. We confirmed that the SNP in pMdhpRNA277 is associated with A. alternata leaf spot resistance by crossing. This SNP could be used as a marker to distinguish between apple varieties that are resistant or susceptible to A. alternata leaf spot.


Asunto(s)
Alternaria/genética , Malus/genética , Malus/virología , Enfermedades de las Plantas/virología , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , ARN de Planta/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/virología
13.
Plant Sci ; 274: 212-222, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30080606

RESUMEN

α-linolenic acid (ALA) deficiency and a skewed ω6: ω3 fatty acid ratio in the diet are thought to be a major cause for the high incidence of cardiovascular, inflammatory, and autoimmune diseases. Recent years, tree peony (Paeonia suffruticosa Andr.) with the high proportion of ALA (more than 45% in seed oil) is widely concerned. However, the underlying accumulation mechanism of the ALA in tree peony seeds remains unknown. In this study, comparative transcriptome analysis was performed between two cultivars ('Saiguifei' and 'Jingshenhuanfa') with different ALA contents. The analysis of the metabolic enzymes associated with ALA biosynthesis and temporal accumulation patterns of unsaturated fatty acids demonstrated the importance of microsomal ω-3 fatty acid desaturase 3 (FAD3). Moreover, PsFAD3 gene was identified from tree peony seeds, which was located in endoplasmic reticulum and the expression levels of PsFAD3 were consistent with ALA accumulation patterns in seeds. Heterologous expression in Saccharomyces cerevisiae and Arabidopsis thaliana confirmed that the isolated PsFAD3 protein could catalyze ALA synthesis. These results indicated that PsFAD3 was involved in the synthesis of ALA in seeds and could be exploited by the genetic breeding of new cultivars with high ALA content in tree peony as well as other potential crops.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Paeonia/enzimología , Transcriptoma , Ácido alfa-Linolénico/metabolismo , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/metabolismo , Paeonia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/enzimología , Semillas/genética
14.
Gene ; 666: 72-82, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-29738839

RESUMEN

MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) act as important molecular regulators in a wide range of biological processes during plant development and seed formation, including oil production. Tree peony seeds contain >90% unsaturated fatty acids (UFAs) and high proportions of α-linolenic acid (ALA, > 40%). To dissect the non-coding RNAs (ncRNAs) pathway involved in fatty acids synthesis in tree peony seeds, we construct six small RNA libraries and six transcriptome libraries from developing seeds of two cultivars (J and S) containing different content of fatty acid compositions. After deep sequencing the RNA libraries, the ncRNA expression profiles of tree peony seeds in two cultivars were systematically and comparatively analyzed. A total of 318 known and 153 new miRNAs and 22,430 lncRNAs were identified, among which 106 conserved and 9 novel miRNAs and 2785 lncRNAs were differentially expressed between the two cultivars. In addition, potential target genes of the microRNA and lncRNAs were also predicted and annotated. Among them, 9 miRNAs and 39 lncRNAs were predicted to target lipid related genes. Results showed that all of miR414, miR156b, miR2673b, miR7826, novel-m0027-5p, TR24651|c0_g1, TR24544|c0_g15, and TR27305|c0_g1 were up-regulated and expressed at a higher level in high-ALA cultivar J when compared to low-ALA cultivar S, suggesting that these ncRNAs and target genes are possibly involved in different fatty acid synthesis and lipid metabolism through post-transcriptional regulation. These results provide a better understanding of the roles of ncRNAs during fatty acid biosynthesis and metabolism in tree peony seeds.


Asunto(s)
MicroARNs/genética , Paeonia/genética , ARN Largo no Codificante/genética , Semillas/genética , Ácido alfa-Linolénico/biosíntesis , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Paeonia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , ARN Largo no Codificante/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Semillas/metabolismo , Transcriptoma
15.
Plant J ; 95(1): 41-56, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29667261

RESUMEN

In S-RNase-mediated self-incompatibility, S-RNase secreted from the style destroys the actin cytoskeleton of the self-pollen tubes, eventually halting their growth, but the mechanism of this process remains unclear. In vitro biochemical assays revealed that S-RNase does not bind or sever filamentous actin (F-actin). In apple (Malus domestica), we identified an actin-binding protein containing myosin, villin and GRAM (MdMVG), that physically interacts with S-RNase and directly binds and severs F-actin. Immunofluorescence assays and total internal reflection fluorescence microscopy indicated that S-RNase inhibits the F-actin-severing activity of MdMVG in vitro. In vivo, the addition of S-RNase to self-pollen tubes increased the fluorescence intensity of actin microfilaments and reduced the severing frequency of microfilaments and the rate of pollen tube growth in self-pollination induction in the presence of MdMVG overexpression. By generating 25 single-, double- and triple-point mutations in the amino acid motif E-E-K-E-K of MdMVG via mutagenesis and testing the resulting mutants with immunofluorescence, we identified a triple-point mutant, MdMVG(E167A/E171A/K185A) , that no longer has F-actin-severing activity or interacts with any of the four S-haplotype S-RNases, indicating that all three amino acids (E167, E171 and K185) are essential for the severing activity of MdMVG and its interaction with S-RNases. We conclude that apple S-RNase interacts with MdMVG to reduce self-pollen tube growth by inhibiting its F-actin-severing activity.


Asunto(s)
Malus/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polinización , Ribonucleasas/metabolismo , Autofecundación , Actinas/metabolismo , Técnica del Anticuerpo Fluorescente , Malus/genética , Malus/crecimiento & desarrollo , Malus/fisiología , Proteínas de Microfilamentos/fisiología , Microscopía Fluorescente , Proteínas de Plantas/fisiología , Tubo Polínico/metabolismo , Polinización/fisiología , Autofecundación/fisiología
16.
Front Plant Sci ; 9: 227, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520292

RESUMEN

It has been proved that the gametophytic self-incompatibility (GSI), mainly exists in Rosaceae and Solanaceae, is controlled by S genes, which are two tightly linked genes located at highly polymorphic S-locus: the S-RNase for pistil specificity and the F-box gene (SFB/SLF) for pollen specificity, respectively. However, the roles of those genes in SI of peach are still a subject of extensive debate. In our study, we selected 37 representative varieties according to the evolution route of peach and identified their S genotypes. We cloned pollen determinant genes mutated PperSFB1m, PperSFB2m, PperSFB4m, and normal PperSFB2, and style determinant genes PperS1-RNase, PperS2-RNase, PperS2m-RNase, and PperS4-RNase. The mutated PperSFBs encode truncated SFB proteins due to a fragment insertion. The truncated PperSFBs and normal PperSFB2 interacted with PperS-RNases demonstrated by Y2H. Normal PperSFB2 was divided into four parts: box, box-V1, V1-V2, and HVa-HVb. The box domain of PperSFB2 did not interact with PperS-RNases, both of the box-V1 and V1-V2 had interactions with PperS-RNases, while the hypervariable region of PperSFB2 HVa-HVb only interacted with PperS2-RNase showed by Y2H and BiFC assay. Bioinformatics analysis of peach genome revealed that there were other F-box genes located at S-locus, and of which three F-box genes were specifically expressed in pollen, named as PperSLFL1, PperSLFL2, and PperSLFL3, respectively. In phylogenetic analysis PperSLFLs clustered with Maloideae SFBB genes, and PperSFB genes were clustered into the other group with other SFB genes of Prunus. Protein interaction analysis revealed that the three PperSLFLs interacted with PperSSK1 and PperS-RNases with no allelic specificity. In vitro ubiquitination assay showed that PperSLFLs could tag ubiquitin molecules onto PperS-RNases. The above results suggest that three PperSLFLs are the appropriate candidates for the "general inhibitor," which would inactivate the S-RNases in pollen tubes, involved in the self-incompatibility of peach.

17.
New Phytol ; 218(2): 579-593, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29424440

RESUMEN

Apple exhibits S-RNase-based self-incompatibility (SI), in which S-RNase plays a central role in rejecting self-pollen. It has been proposed that the arrest of pollen growth in SI of Solanaceae plants is a consequence of the degradation of pollen rRNA by S-RNase; however, the underlying mechanism in Rosaceae is still unclear. Here, we used S2 -RNase as a bait to screen an apple pollen cDNA library and characterized an apple soluble inorganic pyrophosphatase (MdPPa) that physically interacted with S-RNases. When treated with self S-RNases, apple pollen tubes showed a marked growth inhibition, as well as a decrease in endogenous soluble pyrophosphatase activity and elevated levels of inorganic pyrophosphate (PPi). In addition, S-RNase was found to bind to two variable regions of MdPPa, resulting in a noncompetitive inhibition of its activity. Silencing of MdPPa expression led to a reduction in pollen tube growth. Interestingly, tRNA aminoacylation was inhibited in self S-RNase-treated or MdPPa-silenced pollen tubes, resulting in the accumulation of uncharged tRNA. Furthermore, we provide evidence showing that this disturbance of tRNA aminoacylation is independent of RNase activity. We propose an alternative mechanism differing from RNA degradation to explain the cytotoxicity of the S-RNase apple SI process.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Malus/enzimología , Tubo Polínico/enzimología , Tubo Polínico/crecimiento & desarrollo , Ribonucleasas/metabolismo , Aminoacilación de ARN de Transferencia , Secuencia de Aminoácidos , Difosfatos/metabolismo , Unión Proteica , Ribonucleasas/química , Solubilidad
18.
Funct Plant Biol ; 44(4): 455-463, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32480578

RESUMEN

A dynamic actin cytoskeleton is essential for pollen tube growth and germination. However, the molecular mechanism that determines the organisation of the actin cytoskeleton in pollen remains poorly understood. ADF modulates the structure and dynamics of actin filaments and influences the higher-order organisation of the actin cytoskeleton in eukaryotic cells. Members of the ADF family have been shown to have important functions in pollen tube growth. However, the role of this gene family remains largely unknown in apple (Malus domestica Borkh.). In this study, we identified seven ADFs in the apple genome. Phylogenetic analysis showed that MdADF1 clusters with Arabidopsis thaliana (L.) Heynh. AtADF7, ADF8, ADF10 and AtADF11. We performed sequence alignments and analysed the domain structures of the seven MdADF proteins and identified the chromosome locations of the encoding genes. We cloned the gene encoding MdADF1 from 'Ralls Janet' apple and found that it was strongly expressed in pollen. Biochemical assays revealed that MdADF1 directly bound to and severed F-actin under low Ca2+ conditions. We demonstrated that knockdown of MdADF1 inhibited pollen tube growth and reduced the pollen germination rate, but rendered the pollen insensitive to treatment with Latrunculin B, an actin depolymerising agent. Taken together, our results provide insight into the function of MdADF1 and serve as a reference for studies of ADF in other plants.

19.
Plant Sci ; 252: 162-175, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717452

RESUMEN

In this study, we characterized a naturally occurring self-compatible apple cultivar, 'CAU-1' (S1S9), and studied the underlying mechanism that causes its compatibility. Analyses of both fruit set rate and seed number after self-pollination or cross-pollination with 'Fuji' (S1S9), and of pollen tube growth, demonstrated that 'CAU-1' is self-compatible. Genetic analysis by S-RNase PCR-typing of selfed progeny of 'CAU-1' revealed the presence of all progeny classes (S1S1, S1S9, and S9S9). Moreover, no evidence of S-allele duplication was found. These findings support the hypothesis that loss of function of an S-locus unlinked pollen-part mutation (PPM) expressed in pollen, rather than a natural mutation in the pollen-S gene (S1- and S9- haplotype), leads to SI breakdown in 'CAU-1'. In addition, there were no significant differences in pollen morphology or fertility between 'Fuji' and 'CAU-1'. However, we found that the effect of S1- and S9-RNase on the SI behavior of pollen could not be addressed better in 'CAU-1' than in 'Fuji'. Furthermore, we found that a pollen-expressed hexose transporter, MdHT1, interacted with S-RNases and showed significantly less expression in 'CAU-1' than in 'Fuji' pollen tubes. These findings support the hypothesis that MdHT1 may participate in S-RNase internalization during the SI process, and decrease of MdHT1 expression in 'CAU-1' hindered the release of self S-RNase into the cytoplasm of pollen tubes, thereby protecting pollen from the cytotoxicity of S-RNase, finally probably resulting in self-compatibility. Together, these findings indicate that S-locus external factors are required for gametophytic SI in the Rosaceae subtribe Pyrinae.


Asunto(s)
Malus/genética , Frutas/genética , Frutas/fisiología , Genotipo , Malus/fisiología , Malus/ultraestructura , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Transporte de Monosacáridos/fisiología , Mutación , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Tubo Polínico/genética , Tubo Polínico/fisiología , Tubo Polínico/ultraestructura , Polinización/genética , Regiones Promotoras Genéticas , Reproducción/genética
20.
J Exp Bot ; 65(12): 3121-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24759884

RESUMEN

As a core factor in S-RNase-based gametophytic self-incompatibility (GSI), the SCF (SKP1-Cullin1-F-box-Rbx1) complex (including pollen determinant SLF, S-locus-F-box) functions as an E3 ubiquitin ligase on non-self S-RNase. The SCF complex is formed by SKP1 bridging between SLF, CUL1, and Rbx1; however, it is not known whether an SCF complex lacking SKP1 can mediate the ubiquitination of S-RNase. Three SKP1-like genes from pollen were cloned based on the structural features of the SLF-interacting-SKP1-like (SSK) gene and the 'Golden Delicious' apple genome. These genes have a motif of five amino acids following the standard 'WAFE' at the C terminal and, in addition, contain eight sheets and two helices. All three genes were expressed exclusively in pollen. In the yeast two-hybrid and pull-down assays only one was found to interact with MdSFBB and MdCUL1, suggesting it is the SLF-interacting SKP1-like gene in apple which was named MdSSK1. In vitro experiments using MdSSK1, S2-MdSFBB1 (S2-Malus domestica S-locus-F-box brother) and MdCUL1 proteins incubated with S 2-RNase and ubiquitin revealed that the SCF complex ubiquitinylates S-RNase in vitro, while MdSBP1 (Malus domestica S-RNase binding protein 1) could not functionally replace MdSSK1 in the SCF complex in ubiquitinylating S-RNase. According to the above experiments, MdSBP1 is probably the only factor responsible for recognition with S-RNase, while not a component of the SCF complex, and an SCF complex containing MdSSK1 is required for mediating the ubiquitination of S-RNase.


Asunto(s)
Malus/genética , Proteínas de Plantas/genética , Ribonucleasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Malus/enzimología , Malus/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...