Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 7(14)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35700051

RESUMEN

Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority. This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to nonhuman primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV-associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro-plaque reduction neutralization test titer of ≥ 150 was determined as a surrogate of protection, which was supported by analysis of samples from a seroepidemiological study. In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step toward vaccine licensure to reduce the medical burden caused by chikungunya.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Anticuerpos Antivirales , Fiebre Chikungunya/prevención & control , Humanos , Estudios Seroepidemiológicos , Vacunas Atenuadas
2.
Vaccine ; 33(44): 5905-12, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26187258

RESUMEN

Vaccines have been used for centuries to protect people and animals against infectious diseases. For vaccine production, it has become evident that cell culture technology can be considered as a key milestone and has been the result of decades of progress. The development and implementation of cell substrates have permitted massive and safe production of viral vaccines. The demand in new vaccines against emerging viral diseases, the increasing vaccine production volumes, and the stringent safety rules for manufacturing have made cell substrates mandatory viral vaccine producer factories. In this review, we focus on cell substrates for the production of vaccines against human viral diseases. Depending on the nature of the vaccine, choice of the cell substrate is critical. Each manufacturer intending to develop a new vaccine candidate should assess several cell substrates during the early development phase in order to select the most convenient for the application. First, as vaccine safety is quite naturally a central concern of Regulatory Agencies, the cell substrate has to answer the regulatory rules stringency. In addition, the cell substrate has to be competitive in terms of viral-specific production yields and manufacturing costs. No cell substrate, even the so-called "designer" cell lines, is able to fulfil all the requested criteria for all viral vaccines. Therefore, the availability of a variety of cell substrates for vaccine production is essential because it improves the chance to successfully respond to the current and future needs of vaccines linked to new emerging or re-emerging infectious diseases (e.g. pandemic flu, Ebola, and Chikungunya outbreaks).


Asunto(s)
Tecnología Farmacéutica/métodos , Vacunas Virales/aislamiento & purificación , Vacunas Virales/metabolismo , Virosis/prevención & control , Técnicas de Cultivo de Célula/métodos , Línea Celular , Humanos
3.
MAbs ; 2(4): 405-15, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20562528

RESUMEN

Monoclonal antibodies (mAbs) represent the fastest growing class of therapeutic proteins. The increasing demand for mAb manufacturing and the associated high production costs call for the pharmaceutical industry to improve its current production processes or develop more efficient alternative production platforms. The experimental control of IgG fucosylation to enhance antibody dependent cell cytotoxicity (ADCC) activity constitutes one of the promising strategies to improve the efficacy of monoclonal antibodies and to potentially reduce the therapeutic cost. We report here that the EB66 cell line derived from duck embryonic stem cells can be efficiently genetically engineered to produce mAbs at yields beyond a 1 g/L, as suspension cells grown in serum-free culture media. EB66 cells display additional attractive grown characteristics such as a very short population doubling time of 12 to 14 hours, a capacity to reach very high cell density (> 30 million cells/mL) and a unique metabolic profile resulting in low ammonium and lactate accumulation and low glutamine consumption, even at high cell densities. Furthermore, mAbs produced on EB66 cells display a naturally reduced fucose content resulting in strongly enhanced ADCC activity. The EB66 cells have therefore the potential to evolve as a novel cellular platform for the production of high potency therapeutic antibodies.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Industria Farmacéutica/métodos , Células Madre Embrionarias , Fucosa/química , Inmunoterapia/métodos , Animales , Anticuerpos Monoclonales/química , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Procesos de Crecimiento Celular , Línea Celular , Patos , Fucosa/metabolismo , Ingeniería Genética , Humanos , Mejoramiento de la Calidad , Células Madre/metabolismo
4.
Genes Cells ; 7(1): 29-39, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11856371

RESUMEN

BACKGROUND: Several recent reports have connected protein methylation with differentiation. Furthermore, the BTG/TOB proteins have also been implicated in such control. BTG1 and 2 have been shown to interact with PRMT1 (predominant cellular arginine N-methyltransferase of type I). RESULTS: First, we have studied the interaction between PRMT1 and the proteins of the BTG/TOB family. We show that boxC, a sequence present only in BTG1 and BTG2, is essential for this association. Using boxC peptide, we have investigated the importance of PRMT1/BTG protein association during type I protein methylation reactions. Finally, we show that the addition of boxC fused to penetratin interferes with the neuronal differentiation of PC12 cells and ES cell-derived neurones. CONCLUSIONS: Taken together, these results indicate that PRMT1/BTG proteins could play a key role in the arginine methylation-mediated signalling pathway as well as in neuronal differentiation.


Asunto(s)
Proteínas Inmediatas-Precoces/fisiología , Proteínas de Neoplasias/fisiología , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Apoptosis , Proteínas Portadoras/metabolismo , Ciclo Celular , Diferenciación Celular , Péptidos de Penetración Celular , Metilación de ADN , Neuronas , Células PC12 , Ratas , Análisis de Secuencia de Proteína , Transducción de Señal , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...