Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 10(1): 221410, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636313

RESUMEN

Lodging impedes the successful cultivation of cereal crops. Complex anatomy, morphology and environmental interactions make identifying reliable and measurable traits for breeding challenging. Therefore, we present a unique collaboration among disciplines for plant science, modelling and simulations, and experimental fluid dynamics in a broader context of breeding lodging resilient wheat and oat. We ran comprehensive wind tunnel experiments to quantify the stem bending behaviour of both cereals under controlled aerodynamic conditions. Measured phenotypes from experiments concluded that the wheat stems response is stiffer than the oat. However, these observations did not in themselves establish causal relationships of this observed behaviour with the physical traits of the plants. To further investigate we created an independent finite-element simulation framework integrating our recently developed multi-scale material modelling approach to predict the mechanical response of wheat and oat stems. All the input parameters including chemical composition, tissue characteristics and plant morphology have a strong physiological meaning in the hierarchical organization of plants, and the framework is free from empirical parameter tuning. This feature of our simulation framework reveals the multi-scale origin of the observed wide differences in the stem strength of both cereals that would not have been possible with purely experimental approach.

2.
Nat Commun ; 5: 4216, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24960397

RESUMEN

To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

3.
J Biomech Eng ; 131(1): 011008, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19045924

RESUMEN

There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA anatomy indicating the feasibility of this approach.


Asunto(s)
Aorta Abdominal/patología , Aorta Abdominal/fisiopatología , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/fisiopatología , Modelos Anatómicos , Modelos Cardiovasculares , Reología/métodos , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Simulación por Computador , Estudios de Factibilidad , Humanos
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036303, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16605647

RESUMEN

The Lagrangian evolution of infinitesimal material lines is investigated experimentally through three dimensional particle tracking velocimetry (3D-PTV) in quasihomogeneous turbulence with the Taylor microscale Reynolds number Re(lambda)=50. Through 3D-PTV we access the full tensor of velocity derivatives du(i)/dx(j) along particle trajectories, which is necessary to monitor the Lagrangian evolution of infinitesimal material lines l. By integrating the effect on l of (i) the tensor du(i)/dx(j), (ii) its symmetric part s(ij), (iii) its antisymmetric part r(ij), along particle trajectories, we study the evolution of three sets of material lines driven by a genuine turbulent flow, by "strain only," or by "vorticity only," respectively. We observe that, statistically, vorticity reduces the stretching rate l(i)l(j)s(ij)/l2, altering (by tilting material lines) the preferential orientation between l and the first (stretching) eigenvector lambda1 of the rate of strain tensor. In contrast, s(ij), in "absence" of vorticity, significantly contributes to both tilting and stretching, resulting in an enhanced stretching rate compared to the case of material lines driven by the full tensor du(i)/dx(j). The same trend is observed for the deformation of material volumes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...