Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 203: 106000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084796

RESUMEN

Spodoptera frugiperda is a notorious invasive pest causing substantial yield losses of crops and has developed resistance to various types of insecticides. In this study, a cyantraniliprole-resistant strain, SfCYAN-R, was obtained from a susceptible strain, SfCYAN-S, after 13 generations of selection with cyantraniliprole. The fitness cost in SfCYAN-R strain was evaluated, and the putative resistance-related genes were explored by RNA-seq analysis. The results showed that SfCYAN-R strain developed 23.97-fold resistance to cyantraniliprole with the realistic heritability of 0.127. The development time of eggs, larvae, prepupae and pupae in SfCYAN-R strain was significantly prolonged than that in SfCYAN-S strain, but no difference in pupation rate, emergence rate and female fecundity was observed between SfCYAN-R and SfCYAN-S strains. Comparative gene expression analysis between SfCYAN-R and SfCYAN-S strains identified 776 significant differentially expressed genes (DEGs), among which several DEGs associated with xenobiotic metabolism were upregulated in SfCYAN-R strain. These results provide insights into the resistance mechanisms of cyantraniliprole and would be helpful for resistance management of S. frugiperda.


Asunto(s)
Resistencia a los Insecticidas , Insecticidas , Pirazoles , Spodoptera , ortoaminobenzoatos , Animales , Spodoptera/genética , Spodoptera/efectos de los fármacos , ortoaminobenzoatos/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Pirazoles/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Medición de Riesgo , Larva/genética , Larva/efectos de los fármacos , Femenino
2.
J Agric Food Chem ; 72(22): 12489-12497, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38773677

RESUMEN

The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.


Asunto(s)
Glutatión Transferasa , Proteínas de Insectos , Insecticidas , Ivermectina , Mariposas Nocturnas , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/química , Animales , Insecticidas/metabolismo , Insecticidas/farmacología , Insecticidas/química , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/enzimología , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Ivermectina/farmacología , Ivermectina/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Cinética , Oryza/metabolismo , Oryza/parasitología , Oryza/química , Glutatión/metabolismo , Glutatión/química
3.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582591

RESUMEN

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Asunto(s)
Ecdisteroides , Insecticidas , Pirazoles , ortoaminobenzoatos , Animales , Spodoptera , Metabolismo de los Lípidos , Larva , Insecticidas/toxicidad , Carbohidratos
4.
J Agric Food Chem ; 72(8): 3973-3983, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38361393

RESUMEN

The lepidopteran-specific RNAi efficiency-related nuclease (REase) has been shown to contribute to double-strand RNA (dsRNA) degradation in several lepidopteran insects. However, little is known about its regulatory mechanism. In this study, we identified and characterized SfREase in Spodoptera frugiperda. The exposure of the third-instar larvae to dsEGFP and high temperature led to the upregulation of SfREase, whereas starvation treatment resulted in the downregulation of SfREase. Further experiments revealed that dsRNA degraded more slowly in the hemolymph or midgut fluid extracted from dsSfREase-injected or dsSfREase-ingested larvae compared with those from dsEGFP-treated larvae, and the recombinant SfREase degraded dsRNA in a concentration-dependent manner. Additionally, the knockdown of SfREase improved RNAi efficiency. Finally, both RNAi and dual-luciferase reporter assay in Sf9 cells revealed that SfREase is negatively regulated by FOXO. These data provide insights into the function and regulatory mechanism of REase and have applied implications for the development of an RNAi-based control strategy of S. frugiperda.


Asunto(s)
Insectos , ARN Bicatenario , Animales , Interferencia de ARN , Spodoptera , Insectos/genética , Larva/genética , Larva/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo
5.
J Agric Food Chem ; 71(37): 13717-13728, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37691233

RESUMEN

As the rate-limiting enzyme in de novo Glutathione (GSH) biosynthesis, the mammalian glutamate cysteine ligase (Gcl) catalytic (Gclc) and modifier (Gclm) subunits are regulated at multiple levels, whereas the function and regulatory mechanism of insect Gcl remain to be explored. In this study, we identified and characterized SfGclc and SfGclm in Spodoptera frugiperda. SfGclc and SfGclm were highly expressed in the hindgut and relatively less expressed in other tissues. The exposure of the third instar larvae to LC30 of emamectin benzoate (EMB) significantly reduced the GSH content with a concomitant upregulation of SfGclc and SfGclm. Further in vivo pretreatment with L-BSO, the Gcl inhibitor, increased the susceptibility of S. frugiperda to EMB. Consistently, overexpression of SfGclc and SfGclm increased the Sf9 cell viability under EMB treatment. Finally, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that SfGclc is regulated by transcription factor CncC. These data provide insights into the function and regulatory mechanism of insect Gcl, and they imply that disruption of the redox homeostasis might be a practical strategy to enhance the insecticidal activity of EMB and other insecticides.


Asunto(s)
Glutamato-Cisteína Ligasa , Insecticidas , Animales , Glutamato-Cisteína Ligasa/genética , Spodoptera/genética , Ivermectina/farmacología , Insecticidas/farmacología , Glutatión , Mamíferos
6.
Insects ; 14(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37504587

RESUMEN

The glutamate-gated chloride channels (GluCls) play essential roles in signal transduction by regulating fast inhibitory synaptic transmission in the nervous system of invertebrates. While there is only one GluCl subunit in the insect, the diversity of insect GluCls is broadened by alternative splicing. In the present study, three TcGluCl variant genes were cloned from the red flour beetle Tribolium castaneum. Analysis of the characteristics of TcGluCls including sequence features, genomic structures, and alternative splicing revealed that TcGluCls had the typical structural features of GluCls and showed high homologies with the GluCls from other insect orders. The TcGluCl-encoding gene consists of nine exons and three variants (TcGluCl-3a, TcGluCl-3b, and TcGluCl-3c) were generated by the alternative splicing of exon 3, which was a highly conserved alternative splicing site in insect GluCls. Homology modeling of TcGluCl-3a showed that the exon 3 coding protein located at the N-terminal extracellular domain, and there were no steric clashes encountered between the exon 3 coding region and ivermectin/glutamate binding pocket, which indicated that the alternative splicing of exon 3 might have no impact on the binding of GluCls to glutamate and insecticide. In addition to the head tissue, TcGluCl-3a and TcGluCl-3c also had high expressions in the ovary and testis of T. castaneum, whereas TcGluCl-3b showed high expression in the midgut, suggesting the diverse physiological functions of TcGluCl variants in T. castaneum. The total TcGluCl and three variants showed the highest expression levels in the early stage larvae. The expressions of TcGluCl, TcGluCl-3b, and TcGluCl-3c were significantly increased from the late-stage larvae to the early stage pupae and indicated that the TcGluCl might be involved in the growth and development of T. castaneum. These results are helpful to further understand the molecular characteristics of insect GluCls and provide foundations for studying the specific function of the GluCl variant.

7.
Pestic Biochem Physiol ; 191: 105362, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963952

RESUMEN

It is well known that sublethal dose of insecticides induces life history trait changes of both target and non-target insect species, however, the underlying mechanisms remain not well understood. In this study, the effects of low concentrations of the anthranilic diamide insecticide chlorantraniliprole on the development and reproduction of the fall armyworm (FAW), Spodoptera frugiperda, were evaluated, and the underlying mechanisms were explored. The results showed that exposure of FAW to LC10 and LC30 chlorantraniliprole prolonged the larvae duration, decreased the mean weight of the larvae and pupae, and lowered the pupation rate as well as emergence rate. The fecundity of female adults was also negatively affected by treatment with low concentrations of chlorantraniliprole. Consistently, we found that exposure of FAW to LC30 chlorantraniliprole downregulated the mRNA expression of juvenile hormone (JH) esterase (SfJHE), leading to the increase of JH titer in larvae. We also found that treatment with low concentrations of chlorantraniliprole suppressed the expression of ribosomal protein S6 kinase1 (SfS6K1) in female adults, resulting in the downregulation of the gene encoding vitellogenin (SfVg). These results provided insights into the mechanisms underlying the effects of low concentrations of insecticides on insect pests, and had applied implications for the control of FAW.


Asunto(s)
Insecticidas , Animales , Spodoptera , Insecticidas/toxicidad , Larva , Reproducción
8.
Pest Manag Sci ; 79(7): 2338-2352, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36797212

RESUMEN

BACKGROUND: Sublethal exposure to insecticides causes changes in insect behaviors and physiologies including feeding, mobility, communication, hormone homeostasis, development and fecundity, however, the underlying molecular mechanisms were largely unclear. Our previous studies revealed that sublethal chlorantraniliprole exposure disturbed the hormone homeostasis, reduced the weight and longevity and prolonged the developmental duration of Chilo suppressalis. In the present study, the potential phosphorylation modification regulation mechanisms in C. suppressalis in response to sublethal chlorantraniliprole exposure were explored using comparative and quantitative phosphoproteomics. RESULTS: A total of 2640 phosphopeptides belonging to 1144 phosphoproteins were identified, among which 446 phosphopeptides derived from 303 unique phosphoproteins were differentially phosphorylated between the chlorantraniliprole-treated and control larvae. The phosphorylation levels of differentially phosphorylated phosphopeptides were further validated using parallel reaction monitoring (PRM). Functional classification and protein-protein interaction of the differentially phosphorylated proteins (DPPs) were analyzed. Generalized analysis of the DPPs and the differentially expressed genes (DEGs) identified in our previous study showed that sublethal chlorantraniliprole exposure significantly changed the transcription and phosphorylation levels of genes/proteins associated with carbohydrate and lipid metabolism, cytoskeleton, signal transduction, transcription, translation and post-translational modification, leading to the dysfunctions of energy metabolism, transcription regulation, protein synthesis and modification, and signal transduction in C. suppressalis. Further analysis of the phosphorylation motifs in DPPs revealed that the MAPKs, CDKs, CaMK II, PKA, PKC and CK II protein kinases might be directly responsible for the phosphoproteomics response of C. suppressalis to chlorantraniliprole treatment. CONCLUSION: Our results provide abundant phosphorylation information for characterizing the protein modification in insects, and also provide valuable insights into the molecular mechanisms of insect post-translational modifications in response to sublethal insecticide exposure. © 2023 Society of Chemical Industry.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Fosfopéptidos , Larva , Insecticidas/toxicidad , Fosfoproteínas
9.
J Agric Food Chem ; 71(5): 2313-2321, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36705998

RESUMEN

The mammalian heme oxygenase (HO) plays an important role in cytoprotection against oxidative-stress-induced cell damage; however, functional characterization of insect HO is still limited. In this study, cDNA encoding a HO, named SfHO, was cloned from Spodoptera frugiperda. Analysis of the transcription level and enzymatic activity showed that exposure of the LC30 concentration of chlorantraniliprole to the third instar larvae significantly upregulated both the mRNA level and enzymatic activity of SfHO at 24 h after treatment. Further injection of the HO activator, hemin, into the third instar larvae led to the upregulation of SfHO as well as decreased susceptibility of S. frugiperda to chlorantraniliprole. Consistently, overexpression of SfHO increased the Sf9 cell viability under chlorantraniliprole treatment. Strikingly, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that, unlike mammalian HO that is regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), SfHO was not subject to the regulation by cap 'n' collar isoform C (CncC), the Nrf2 homologue in insects. These data provide insights into the function and regulatory mechanism of insect HOs and had applied implications for the control of S. frugiperda.


Asunto(s)
Hemo Oxigenasa (Desciclizante) , Factor 2 Relacionado con NF-E2 , Animales , Hemo Oxigenasa (Desciclizante)/genética , Spodoptera , Factor 2 Relacionado con NF-E2/genética , ortoaminobenzoatos/farmacología , Larva , Hemo-Oxigenasa 1/genética , Mamíferos
10.
J Agric Food Chem ; 70(15): 4611-4619, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35410476

RESUMEN

Chilo suppressalis has developed high levels of resistance to abamectin in many areas of China, while the underline resistance mechanisms are largely unclear. ATP-binding cassette (ABC) transporters function in transporting a large diversity of substrates including insecticides and play important roles in the detoxification metabolism of insects. In this study, synergism bioassay revealed that the ABC transporters were involved in the detoxification of C. suppressalis to abamectin. Six ABC transporter genes were upregulated in C. suppressalis after abamectin exposure, among which five genes CsABCC8, CsABCE1, CsABCF1, CsABCF2, and CsABCH1 were induced in the detoxification-related tissues. In addition, the five ABC transporters were recombinantly expressed in Sf9 cells, and the cytotoxicity assay showed that the viabilities of cells expressing CsABCC8 or CsABCH1 were significantly increased when compared with the viabilities of cells expressing EGFP after abamectin, chlorantraniliprole, cyantraniliprole, fipronil, and chlorpyrifos treatment, respectively. Overexpression of CsABCE1 significantly increased the viabilities of cells to abamectin, chlorantraniliprole, deltamethrin, and indoxacarb exposure, respectively. These results suggested that CsABCC8, CsABCE1, and CsABCH1 might participate in the detoxification and transport of abamectin and several other classes of insecticides in C. suppressalis. Our study provides valuable insights into the transport-related detoxification mechanisms in C. suppressalis and other insects.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Transportadoras de Casetes de Unión a ATP/genética , Animales , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Ivermectina/análogos & derivados , Larva , Mariposas Nocturnas/genética
11.
Pestic Biochem Physiol ; 182: 105050, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35249650

RESUMEN

The glutathione S-transferases (GSTs) are a kind of metabolic enzymes and participate in the detoxification metabolism of xenobiotics in various organisms. In insects, GSTs play important roles in the development of insecticide resistance and antioxidant protection. The rice stem borer Chilo suppressalis is one of the most damaging pests in rice and has developed high levels of resistance to abamectin in many areas of China, whereas the potential resistance mechanisms of C suppressalis to abamectin are still unclear. In the present study, a total of 23 CsGSTs genes were identified from the C. suppressalis transcriptome and genome, including 21 cytosolic and two microsomal CsGSTs. The cytosolic CsGSTs were further classified into seven categories based on phylogenetic analysis, and their sequence characteristics and genome structures were also analyzed. Synergism study revealed that the susceptibility of C. suppressalis to abamectin was increased significantly when the CsGSTs were inhibited by diethyl maleate (DEM). Sixteen CsGSTs genes were up-regulated in C. suppressalis larvae after treatment with abamectin, among which four CsGSTs genes including CsGSTe2, CsGSTe4, CsGSTo4 and CsGSTu1 were significantly induced in the midgut and fat body tissues. These results indicated that CsGSTs were associated with the detoxification of C. suppressalis to abamectin, and CsGSTe2, CsGSTe4, CsGSTo4 and CsGSTu1 might play important roles in the insecticide detoxification or antioxidant protection in C. suppressalis. Our present study provides valuable information on C. suppressalis GSTs, and are helpful in understanding the contributions of GSTs in abamectin detoxification in C. suppressalis and other insects.


Asunto(s)
Mariposas Nocturnas , Animales , Glutatión/metabolismo , Ivermectina/análogos & derivados , Mariposas Nocturnas/metabolismo , Filogenia , Transferasas/genética , Transferasas/metabolismo
12.
Pest Manag Sci ; 77(4): 2045-2053, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33342029

RESUMEN

BACKGROUND: The selective insecticide flonicamid shows highly insecticidal activities against piercing-sucking insects and has been widely used for the control of Hemipteran insect pests, whereas its effects on Lepidopteran insect pests remain largely unknown. Recently, inward rectifier potassium (Kir) channel has been verified to be a target of flonicamid, however, functional characterization of Lepidopteran Kir genes is still lacking. RESULTS: Flonicamid shows no insecticidal toxicity against Chilo suppressalis larvae. However, the feeding and growth of larvae were reversibly inhibited by flonicamid (50-1200 mg L-1 ). Flonicamid treatment also remarkably reduced and delayed the pupation and eclosion of Chilo suppressalis. Additionally, five distinct Kir channel genes (CsKir1, CsKir2A, CsKir2B, CsKir3A and CsKir3B) were cloned from Chilo suppressalis. Expression profiles analysis revealed that CsKir2A was predominately expressed in the hindgut of larvae, whereas CsKir2B had high expressions in the Malpighian tubules and hindgut. RNA interference (RNAi)-mediated knockdown of CsKir2B significantly reduced the growth and increased the mortalities of larvae, whereas silencing of CsKir2A had no obvious effects on Chilo suppressalis. CONCLUSION: Flonicamid exhibits adverse effects on the growth and development of Chilo suppressalis. CsKir2B might be involved in the feeding behavior of Chilo suppressalis. These results provide valuable information on the effects of flonicamid on non-target insects as well as the function of insect Kir channels, and are helpful in developing new insecticide targeting insect Kir channels. © 2020 Society of Chemical Industry.


Asunto(s)
Mariposas Nocturnas , Canales de Potasio de Rectificación Interna , Animales , Larva/genética , Mariposas Nocturnas/genética , Niacinamida/análogos & derivados , Canales de Potasio de Rectificación Interna/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...