Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Lett ; 3712024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066685

RESUMEN

This study aimed to investigate the changes of gut microbiota and allergic inflammation in mice with allergic enteritis caused by milk protein. In this study, female BALB\C mice in the whey protein (WP-sensitized) group were gavaged with WP and normal saline, the sham-sensitized group was given normal saline once a week for 5 weeks. One week later, the WP-sensitized mice were administered 60 mg ß-lactoglobulin (BLG). The results showed that mice's body weight decreased, feces with loose and bloody, and systemic allergic reactions and ear swelling increased in the WP-sensitized group. The levels of WP-specific Ig, mMCP-1, calprotectin of feces, and inflammation-related factors in the WP-sensitized group were increased. WP-sensitized group intestine tissues were damaged severely and the expressions of ZO-1, Claudin-1, and Occludin reduced. The results of 16S rRNA sequencing showed that there were differences in operational taxonomic units (OUT) levels of gut microbes between the two groups, o_Clostridiales, c_Clostridia, and f_Lachnospiraceae were more abundant in the WP-sensitized group. In conclusion, the WP sensitization can induce the allergic inflammation, intestinal injury and intestinal barrier dysfunction in mice, and the gut microbes were also changed, which provided a reference for the treatment of WP-sensitized mice.


Asunto(s)
Colitis , Enteritis , Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Femenino , Animales , Ratones , Proteínas de la Leche , ARN Ribosómico 16S/genética , Solución Salina , Inmunoglobulina E , Inflamación
2.
Heliyon ; 9(11): e21004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027590

RESUMEN

Gastric ulcers significantly impact the quality of life of patients, the pathogenesis of which is closely associated with Helicobacter pylori (HP) infection. Oxidative stress is involved in the pathological mechanism of gastric ulcers. Recently, adenosine A2B Receptor (A2BR) was reported to activate the p38MAPK pathway. However, the role of A2BR in gastric ulcers remains unknown. In the present study, the biological function of A2BR in HP-induced gastric ulcers was investigated to explore novel targets for gastric ulcers. GES-1 cells were infected with HP, followed by incubation with 10 µM BAY60-6583 (A2BR agonist) and 25 nM PSB1115 (A2BR antagonist). In HP-infected GES-1 cells, an increased apoptotic rate, enhanced migration ability, excessive release of reactive oxygen species (ROS), increased malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity were observed, accompanied by the activation of p38MAPK signaling, which were dramatically aggravated by BAY60-6583 and alleviated by PSB1115. In animal experiments, rats were treated with 2 mg/kg BAY60-6583 and 10 mg/kg PSB1115, followed by gastric ulcer modeling 30 min later. In HP-infected rats, increased ulcer area, elevated pepsin activity, increased hematoxylin and eosin (HE) pathological scores, increased MDA levels, and decreased SOD activity were observed, which were further aggravated by BAY60-6583 and ameliorated by PSB1115. Finally, the effects of A2BR activation on apoptosis, migration, oxidative stress, and p38MAPK signaling in HP-infected GES-1 cells were reversed by an inhibitor of the p38MAPK pathway. Collectively, A2BR facilitated the pathogenesis of HP-induced gastric ulcers by inducing oxidative stress through p38MAPK activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA