Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38604156

RESUMEN

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Asunto(s)
Transición Epitelial-Mesenquimal , Hígado , Sistema de Señalización de MAP Quinasas , Proteína smad3 , Células Madre , Factor de Crecimiento Transformador beta , Proteína smad3/metabolismo , Células Madre/metabolismo , Animales , Factor de Crecimiento Transformador beta/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Hígado/metabolismo , Supervivencia Celular/efectos de los fármacos , Fosforilación , Ratones , Transducción de Señal
2.
Nat Commun ; 15(1): 1995, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443404

RESUMEN

Cardiac macrophage contributes to the development of cardiac fibrosis, but factors that regulate cardiac macrophages transition and activation during this process remains elusive. Here we show, by single-cell transcriptomics, lineage tracing and parabiosis, that cardiac macrophages from circulating monocytes preferentially commit to macrophage-to-myofibroblast transition (MMT) under angiotensin II (Ang II)-induced hypertension, with accompanying increased expression of the RNA N6-methyladenosine demethylases, ALKBH5. Meanwhile, macrophage-specific knockout of ALKBH5 inhibits Ang II-induced MMT, and subsequently ameliorates cardiac fibrosis and dysfunction. Mechanistically, RNA immunoprecipitation sequencing identifies interlukin-11 (IL-11) mRNA as a target for ALKBH5-mediated m6A demethylation, leading to increased IL-11 mRNA stability and protein levels. By contrast, overexpression of IL11 in circulating macrophages reverses the phenotype in ALKBH5-deficient mice and macrophage. Lastly, targeted delivery of ALKBH5 or IL-11 receptor α (IL11RA1) siRNA to monocytes/macrophages attenuates MMT and cardiac fibrosis under hypertensive stress. Our results thus suggest that the ALKBH5/IL-11/IL11RA1/MMT axis alters cardiac macrophage and contributes to hypertensive cardiac fibrosis and dysfunction in mice, and thereby identify potential targets for cardiac fibrosis therapy in patients.


Asunto(s)
Adenina , Hipertensión , Interleucina-11 , Animales , Humanos , Ratones , Adenina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB , Angiotensina II , Cardiotónicos , Macrófagos , Miofibroblastos , ARN
3.
JCI Insight ; 9(8)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502228

RESUMEN

Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.


Asunto(s)
Colesterol , Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/terapia , Animales , Ratones , Femenino , Colesterol/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Humanos , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Tomografía de Emisión de Positrones/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Activación de Linfocitos
4.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38243850

RESUMEN

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Asunto(s)
Lagartos , Melaninas , Animales , Melaninas/genética , Lagartos/genética , Pez Cebra , Regulación de la Temperatura Corporal/genética , Pigmentación de la Piel/genética , Color
5.
J Colloid Interface Sci ; 660: 916-922, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280284

RESUMEN

Intermetallic compounds are emerging as promising oxygen reduction reaction (ORR) catalysts for fuel cells due to their typically higher activity and durability compared to disordered alloys. However, the preparation of intermetallic catalysts often requires high-temperature annealing, which unfortunately leads to adverse sintering of the metal nanoparticles. Herein, we develop a scalable site-selective sulfur anchoring strategy that effectively suppresses alloy sintering, ensuring the formation of efficient intermetallic electrocatalysts with small sizes and high ordering degrees. The alloy-support interactions are precisely modulated by selectively modifying the alloy-support interfaces with oxidized sulfur species, thus simultaneously blocking both the nanoparticle migration and Oswald ripening pathways for sintering. Using this strategy, sub-5 nm PtCo intermetallic electrocatalysts enclosed by two atomic layers of Pt shells have been successfully prepared even at a metal loading higher than 30 wt%. The intermetallic catalysts exhibit excellent ORR performances in both rotating disk electrode and membrane electrode assembly conditions with a mass activity of 1.28 A mgPt-1 at 0.9 V (vs. RHE) and a power density of 1.0 W cm-2 at a current density of 1.5 A cm-2. The improved performances result from the enhanced Pt-Co electronic interactions and compressive surface strain generated by the highly ordering structure, while the atomic Pt shells prevent the dissolution of Co under highly acidic conditions. This work provides new insights to inhibit the sintering of nanoalloys and would promote the scalable synthesis and applications of platinum-based intermetallic catalysts.

6.
Arch Pathol Lab Med ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217332

RESUMEN

CONTEXT.­: Metastatic pleomorphic lobular carcinoma (MPLC) to the bladder is rare and has considerable histologic and immunohistochemical overlap with plasmacytoid urothelial carcinoma (PUC). OBJECTIVE.­: To distinguish MPLC from PUC morphologically and immunohistochemically, including a newer marker, TRPS1. DESIGN.­: Ten MPLCs to the bladder were reassessed and stained with estrogen, progesterone, and androgen receptors; GATA3; keratin 5/6; HMWK; GCDFP-15; and TRPS1. Sixteen PUCs constituted controls. RESULTS.­: We studied 4 transurethral resections of bladder tumors and 6 biopsies from 10 women (median age, 69 years) who had breast cancer on average 15 years prior. Microscopic patterns included single cells and cords of cells (n = 4), nests/sheets of dyscohesive cells (n = 2), or both (n = 4). All tumors had cells with voluminous eosinophilic cytoplasm and eccentric nuclei mimicking PUC, and 7 of 10 tumors had signet ring cells. MPLCs were positive for estrogen (8 of 10), progesterone (3 of 7), and androgen receptors (4 of 10); GCDFP-15 (7 of 10); GATA3 (9 of 10); HMWK (7 of 8); and TRPS1 (7 of 10). No MPLCs stained for keratin 5/6 (n = 9). Of 16 PUCs, 2 showed faint and 2 demonstrated strong TRSP1 staining; 7 of 16 were negative for p63. CONCLUSIONS.­: MPLC to bladder often presents in patients with a remote history of breast cancer, exhibiting significant histologic and immunohistochemical overlap with PUC. Based on prior works and the current study, estrogen receptor (particularly SP-1), mammaglobin, and p63 help differentiate MPLC from PUC. Keratin 5/6 may aid in distinguishing a less frequent basal type PUC because it is typically negative in MPLC. Some PUCs express TRPS1. Caution should be exercised because immunophenotypes of these tumors greatly overlap, and ramifications of misclassification are major.

7.
Cancer Gene Ther ; 31(4): 586-598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267623

RESUMEN

Glutamate-NMDAR receptors (GRINs) have been reported to influence cancer immunogenicity; however, the relationship between GRIN alterations and the response to immune checkpoint inhibitors (ICIs) has not been determined. This study combined clinical characteristics and mutational profiles from multiple cohorts to form a discovery cohort (n = 901). The aim of this study was to investigate the correlation between the mutation status of the GRIN gene and the response to ICI therapy. Additionally, an independent ICI-treated cohort from the Memorial Sloan Kettering Cancer Center (MSKCC, N = 1513) was used for validation. Furthermore, this study explored the associations between GRIN2A mutations and intrinsic and extrinsic immunity using multiomics analysis. In the discovery cohort, patients with GRIN2A-MUTs had improved clinical outcomes, as indicated by a higher objective response rate (ORR: 36.8% vs 25.8%, P = 0.020), durable clinical benefit (DCB: 55.2% vs 38.7%, P = 0.005), prolonged progression-free survival (PFS: HR = 0.65; 95% CI 0.49 to 0.87; P = 0.003), and increased overall survival (OS: HR = 0.67; 95% CI 0.50 to 0.89; P = 0.006). Similar results were observed in the validation cohort, in which GRIN2A-MUT patients exhibited a significant improvement in overall survival (HR = 0.66; 95% CI = 0.49 to 0.88; P = 0.005; adjusted P = 0.045). Moreover, patients with GRIN2A-MUTs exhibited an increase in tumor mutational burden, high expression of costimulatory molecules, increased activity of antigen-processing machinery, and infiltration of various immune cells. Additionally, gene sets associated with cell cycle regulation and the interferon response were enriched in GRIN2A-mutated tumors. In conclusion, GRIN2A mutation is a novel biomarker associated with a favorable response to ICIs in multiple cancers.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Interferones , Mutación , Biomarcadores de Tumor/genética
9.
J Cardiovasc Transl Res ; 17(1): 153-166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37713049

RESUMEN

Macrophage is the main effector cell during atherosclerosis. We applied single-cell RNA sequencing (scRNA) data to investigate the role of macrophage subsets in atherosclerosis. Monocyte and macrophage clusters were divided into 6 subclusters. Each subcluster's markers were calculated and validated by immunofluorescence. Elevated macrophage subclusters in the WD group were subject to enrichment pathway analysis and exhibited different phenotypes. Pseudotime analysis shows the subclusters originate from monocytes. We cultured bone marrow-derived macrophages with CSF-1 and ox-LDL to simulate an atherosclerotic-like environment and detected the transformation of subclusters. Macrophage-Vegfa and Macrophage-C1qb increased in the WD group. Macrophage-Vegfa acquires the characteristics of phagocytosis and immune response, while Macrophage-C1qb is not involved in lipid metabolism. The two subclusters are both enriched in cell movement and migration pathways. Experimental verification proved Monocyte-Ly6C evolved into Macrophage-Vegfa and Macrophage-C1qb during atherosclerosis progression.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Placa Aterosclerótica , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo , Aterosclerosis/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Aorta/metabolismo , Placa Aterosclerótica/genética
10.
Sci Rep ; 13(1): 17868, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857836

RESUMEN

Bronchopulmonary dysplasia (BPD) is the most common complication of prematurity involving both pre- and post-natal factors. A large, prospective, longitudinal cohort study was conducted to determine whether inflammation-related factors are associated with an increased risk of BPD in preterm infants who were born at a gestational age < 32 weeks, < 72 h after birth and respiratory score > 4. The study included infants from 25 participating hospitals in China between March 1, 2020 and March 31, 2022. The primary outcomes were BPD and severity of BPD at 36 weeks post-menstrual age. A total of 1362 preterm infants were enrolled in the study. After exclusion criteria, the remaining 1088 infants were included in this analysis, of whom, 588 (54.0%) infants were in the BPD group and 500 (46.0%) were in the non-BPD group. In the BPD III model, the following six factors were identified: birth weight (OR 0.175, 95% CI 0.060-0.512; p = 0.001), surfactant treatment (OR 8.052, 95% CI 2.658-24.399; p < 0.001), mean airway pressure (MAP) ≥ 12 cm H2O (OR 3.338, 95% CI 1.656-6.728; p = 0.001), late-onset sepsis (LOS) (OR 2.911, 95% CI 1.514-5.599; p = 0.001), ventilator-associated pneumonia (VAP) (OR 18.236, 95% CI 4.700-70.756; p < 0.001) and necrotizing enterocolitis (NEC) (OR 2.725, 95% CI 1.182-6.281; p = 0.019). Premature infants remained at high risk of BPD and with regional variation. We found that post-natal inflammation-related risk factors were associated with an increased risk of severe BPD, including LOS, VAP, NEC, MAP ≥ 12 cm H2O and use of surfactant.


Asunto(s)
Displasia Broncopulmonar , Neumonía Asociada al Ventilador , Surfactantes Pulmonares , Recién Nacido , Humanos , Lactante , Recien Nacido Prematuro , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/complicaciones , Estudios Longitudinales , Estudios Prospectivos , Estudios de Cohortes , Edad Gestacional , Factores de Riesgo , Inflamación/complicaciones , Tensoactivos
11.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188962, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541532

RESUMEN

Reprogramming of the tumor microenvironment (TME) is a hallmark of cancer. Metabolic reprogramming is a vital approach to sustaining the energy supply in the TME. This alteration exists in both cancer cells and TME cells, collectively establishing an immunotolerant niche to facilitate tumor progression. Limited resources lead to metabolic competition and hinder the biological functions of anti-tumoral immunity. Reprogramming of lipid metabolism and tumor progression is closely related to each other. Due to the complexity of fatty acid (FA) types and the lack of an effective approach for detection, the mechanisms and effects of FA metabolic reprogramming have been unclear. Herein, we review FA metabolism in the tumor milieu, summarize how FA metabolic reprogramming influences antitumor immune response, suggest the mechanisms by which FAs affect immunotherapy against cancer, and discuss the potential of FA metabolism-based drugs in cancer treatment.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Humanos , Animales , Microambiente Tumoral , Ácidos Grasos/metabolismo , Escape del Tumor
12.
J Hazard Mater ; 459: 132229, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37549576

RESUMEN

In this study, the performance and mechanism of the integrated sulfidated nanosized zero-valent iron and ferrous ions (S-nZVI/Fe2+) system for oxygen activation to remove emerging contaminants (ECs) were comprehensively explored. The S-nZVI/Fe2+ system exhibited a 2.4-8.2 times of increase in the pseudo-first order kinetic rate constant for the oxidative degradation of various ECs compared to the S-nZVI system under aerobic conditions, whereas negligible removal was observed in both nZVI and nZVI/Fe2+ systems. Moreover, remarkable EC mineralization efficiency and benign detoxification capacity were also demonstrated in the S-nZVI/Fe2+ system. We revealed that dosing Fe2+ promoted the corrosion of S-nZVI by maintaining an acidic solution pH, which was conducive to O2 activation by dissolved Fe2+ and surface-absorbed Fe(II) to produce •OH. Furthermore, the generation of H* was enhanced for the further reduction of Fe(III) and H2O2 to Fe(II) and •O2-, resulting in the improvement of consecutive single-electron O2 activation for •OH production. Additionally, bisphenol A (BPA) degradation by S-nZVI/Fe2+ was positively correlated with the S-nZVI dosage, with an optimum S/Fe molar ratio of 0.15. The Fenton-like degradation process by S-nZVI/Fe2+ was pH-insensitive, indicating its robust performance over a wide pH range. This study provides valuable insights for the practical implementation of nZVI-based technology in achieving high-efficiency removal of ECs from water.

13.
J Colloid Interface Sci ; 650(Pt B): 1518-1524, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37487282

RESUMEN

Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces. The obtained ultrafine Au@Pd nanowires exhibit an electrochemical active area (ECSA) of 68.5 m2/g and a mass activity of 0.91 A/mg (at 0.9 V vs. RHE), which is around 3.1 and 15.2 times higher than that of commercial Pd/C. The activity loss of the ultrafine Au@Pd nanowire after 10,000 cycles of accelerated degradation tests is only ∼20 %, demonstrating its much better stability compared to commercial Pd/C. Further characterizations combined with density functional theory (DFT) calculations demonstrate that the electronic interactions between Pd atomic layers and underlying Au can increase the electronic density of Pd and promote the efficient activation of oxygen, thus leading to the improved ORR performance.

14.
World J Gastroenterol ; 29(22): 3469-3481, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37389235

RESUMEN

BACKGROUND: Wild rats have the potential to hold zoonotic infectious agents that can spread to humans and cause disease. AIM: To better understand the composition of gut bacterial communities in rats is essential for preventing and treating such diseases. As a tropical island located in the south of China, Hainan province has abundant rat species. Here, we examined the gut bacterial composition in wild adult rats from Hainan province. METHODS: Fresh fecal samples were collected from 162 wild adult rats, including three species (Rattus norvegicus, Leopoldamys edwardsi, and Rattus losea), from nine regions of Hainan province between 2017-2018. RESULTS: We analyzed the composition of gut microbiota using the 16S rRNA gene amplicon sequencing. We identified 4903 bacterial operational taxonomic units (30 phyla, 175 families, and 498 genera), which vary between samples of different rat species in various habitats at various times of the year. In general, Firmicutes were the most abundant phyla, followed by Bacteroidetes (15.55%), Proteobacteria (6.13%), and Actinobacteria (4.02%). The genus Lactobacillus (20.08%), unidentified_Clostridiales (5.16%), Romboutsia (4.33%), unidentified_Ruminococcaceae (3.83%), Bacteroides (3.66%), Helicobacter (2.40%) and Streptococcus (2.37%) were dominant. CONCLUSION: The composition and abundance of the gut microbial communities varied between rat species and locations. This work provides fundamental information to identify microbial communities useful for disease control in Hainan province.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Adulto , Ratas , Animales , ARN Ribosómico 16S/genética , China , Bacteroides , Clostridiales
15.
Transl Oncol ; 35: 101726, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37379773

RESUMEN

Clear cell Renal Cell Carcinoma (ccRCC) is a highly heterogeneous disease, making it challenging to predict prognosis and therapy efficacy. In this study, we aimed to explore the role of 5-methylcytosine (m5C) RNA modification in ccRCC and its potential as a predictor for therapy response and overall survival (OS). We established a novel 5-methylcytosine RNA modification-related gene index (M5CRMRGI) and studied its effect on the tumor microenvironment (TME) using single-cell sequencing data for in-depth analysis, and verified it using spatial sequencing data. Our results showed that M5CRMRGI is an independent predictor of OS in multiple datasets and exhibited outstanding performance in predicting the OS of ccRCC. Distinct mutation profiles, hallmark pathways, and infiltration of immune cells in TME were observed between high- and low-M5CRMRGI groups. Single-cell/spatial transcriptomics revealed that M5CRMRGI could reprogram the distribution of tumor-infiltrating immune cells. Moreover, significant differences in tumor immunogenicity and tumor immune dysfunction and exclusion (TIDE) were observed between the two risk groups, suggesting a better response to immune checkpoint blockade therapy of the high-risk group. We also predicted six potential drugs binding to the core target of the M5CRMRGI signature via molecular docking. Real-world treatment cohort data proved once again that high-risk patients were appropriate for immune checkpoint blockade therapy, while low-risk patients were appropriate for Everolimus. Our study shows that the m5C modification landscape plays a role in TME distribution. The proposed M5CRMRGI-guided strategy for predicting survival and immunotherapy efficacy, we reported here, might also be applied to more cancers other than ccRCC.

16.
Medicine (Baltimore) ; 102(20): e33850, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37335697

RESUMEN

RATIONALE: Only 20 cases of pediatric primary renal non-Hodgkin's lymphoma have been reported since 1995, rare cases and a variety of imaging manifestations have led to difficulties in its diagnosis and treatment. PATIENT CONCERNS: Herein, we share in detail a case of primary renal lymphoma (PRL) in a child and summarize the common clinical manifestations, imaging features, and prognostic factors of pediatric PRL by retrospectively analyzing cases reported in the literature. A 2-year-old boy presented to the clinic with a large mass on the right side of his abdomen along with loss of appetite. DIAGNOSES: Imaging revealed a large right renal mass, nearly replacing the entire renal tissue, along with numerous small nodules in the left kidney. Given no local adenopathy and metastases, the diagnosis was unclear. A percutaneous renal puncture was performed, which proved the diagnosis of Burkitt's lymphoma. Since no bone marrow involvement, this child was diagnosed with pediatric PRL. INTERVENTIONS: This PRL boy was treated with the NHL-BFM95 protocol and supportive care. OUTCOMES: Unfortunately, this boy died of multiple organ failure in the fifth month of treatment. LESSONS: As per literature review, the presentation of pediatric PRL is fatigue, loss of appetite, weight loss, abdominal swelling, or other nonspecific symptoms. Although in 81% of cases it often infiltrates the bilateral kidneys, urine abnormalities caused by pediatric PRL are uncommon. 76.2% of pediatric PRL were boys and 2/3 of all cases presented as diffuse renal enlargement. Those PRL presented as masses could easily be misdiagnosed as WT or other malignancies. Absent of local enlarged lymph node, no necrosis or calcification suggest atypical presentation of renal masses and a percutaneous biopsy is needed in timely establishing the accurate diagnosis for appropriate treatment. Based on our experience, percutaneous renal puncture core biopsy is a safe procedure.


Asunto(s)
Linfoma de Burkitt , Enfermedades Renales , Masculino , Humanos , Niño , Preescolar , Femenino , Estudios Retrospectivos , Riñón/diagnóstico por imagen , Riñón/patología , Linfoma de Burkitt/patología , Enfermedades Renales/patología , Nefrectomía
17.
Proc Natl Acad Sci U S A ; 120(24): e2219649120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276408

RESUMEN

How left-right (LR) asymmetry emerges in a patterning field along the anterior-posterior axis remains an unresolved problem in developmental biology. Left-biased Nodal emanating from the LR organizer propagates from posterior to anterior (PA) and establishes the LR pattern of the whole embryo. However, little is known about the regulatory mechanism of the PA spread of Nodal and its asymmetric activation in the forebrain. Here, we identify bilaterally expressed Follistatin (Fst) as a regulator blocking the propagation of the zebrafish Nodal ortholog Southpaw (Spaw) in the right lateral plate mesoderm (LPM), and restricting Spaw transmission in the left LPM to facilitate the establishment of a robust LR asymmetric Nodal patterning. In addition, Fst inhibits the Activin-Nodal signaling pathway in the forebrain thus preventing Nodal activation prior to the arrival, at a later time, of Spaw emanating from the left LPM. This contributes to the orderly propagation of asymmetric Nodal activation along the PA axis. The LR regulation function of Fst is further confirmed in chick and frog embryos. Overall, our results suggest that a robust LR patterning emerges by counteracting a Fst barrier formed along the PA axis.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Folistatina/genética , Folistatina/metabolismo , Tipificación del Cuerpo/genética , Factor de Crecimiento Transformador beta/metabolismo , Regulación del Desarrollo de la Expresión Génica
18.
Adv Mater ; 35(38): e2303357, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37310893

RESUMEN

Tumor-associated macrophages (TAMs) exhibit an immunosuppressive M2 phenotype and lead to failure of antitumor therapy. Infiltrated erythrocytes during hemorrhage are recognized as a promising strategy for polarizing TAMs. However, novel materials that precisely induce tumor hemorrhage without affecting normal coagulation still face challenges. Here, tumor-targeting bacteria (flhDC VNP) are genetically constructed to realize precise tumor hemorrhage. FlhDC VNP colonizes the tumor and overexpresses flagella during proliferation. The flagella promote the expression of tumor necrosis factor α, which induces local tumor hemorrhage. Infiltrated erythrocytes during the hemorrhage temporarily polarize macrophages to the M1 subtype. In the presence of artesunate, this short-lived polarization is transformed into a sustained polarization because artesunate and heme form a complex that continuously produces reactive oxygen species. Therefore, the flagella of active tumor-targeting bacteria may open up new strategies for reprogramming TAMs and improving antitumor therapy.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Artesunato/metabolismo , Neoplasias/patología , Bacterias , Flagelos/patología , Hemorragia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA