RESUMEN
Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.
Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Nitrógeno/metabolismo , Zeatina/metabolismo , Azúcares/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Grain sorghum is an exceptional source of dietary nutrition with outstanding economic values. Breeding of grain sorghum can be slowed down by the occurrence of genotype × environment interactions (GEI) causing biased estimation of yield performance in multi-environments and therefore complicates direct phenotypic selection of superior genotypes. Multi-environment trials by randomized complete block design with three replications were performed on 13 newly developed grain sorghum varieties at seven test locations across China for two years. Additive main effects and multiplicative interaction (AMMI) and genotype + genotype × environment (GGE) biplot models were adopted to uncover GEI patterns and effectively identify high-yielding genotypes with stable performance across environments. Yield (YLD), plant height (PH), days to maturity (DTM), thousand seed weight (TSW), and panicle length (PL) were measured. Statistical analysis showed that target traits were influenced by significant GEI effects (p < 0.001), that broad-sense heritability estimates for these traits varied from 0.40 to 0.94 within the medium to high range, that AMMI and GGE biplot models captured more than 66.3% of total variance suggesting sufficient applicability of both analytic models, and that two genotypes, G3 (Liaoza No.52) and G10 (Jinza 110), were identified as the superior varieties while one genotype, G11 (Jinza 111), was the locally adapted variety. G3 was the most stable variety with highest yielding potential and G10 was second to G3 in average yield and stability whereas G11 had best adaptation only in one test location. We recommend G3 and G10 for the production in Shenyang, Chaoyang, Jinzhou, Jinzhong, Yulin, and Pingliang, while G11 for Yili.
RESUMEN
With the increase of urban building height, people pay more and more attention to the characteristics of pollutants in urban canopy height. This study combined the generalized additive model (GAM) and the observation-based model (OBM) to explore the vertical characteristics and drivers of ozone (O3) based on meteorology tower (200 m) data to quantify the effects of factors and photochemical reactions on O3 formation at different heights. The F values of GAM reflect the importance of each factor, indicating that NO (F is 33.99 in the peak season, 36.72 in the non-peak season) was the dominant driver of O3 and was more important in the lower layer (20-116 m). Temperature (F is 35.42) was the main contributor to O3 pollution in the peak season, especially for O3 in the upper layer (116-200 m). The net O3 production rate in the peak season was 1.47 times that in the non-peak season due to strong photochemical reactions and meteorological conditions. And the net O3 production rate decreased sharply with increasing height in the two seasons. Less net O3 production in the upper layer was accompanied by a higher O3 mixing ratio, which indicated that there was more background O3 in the upper layer. OBM model results showed that the reaction between hydroperoxyl radical (HO2) and NO was the primary contribution pathway, accounting for 54.00 % and 57.50 % in the peak and non-peak seasons, respectively. O3 formation was highly sensitive to VOCs, while NOx reduction could have positive or negative effects on O3 depending on the levels of hydroxyl radical (OH). The understanding of the formation mechanism of O3 and the influence of NO on O3 provides insights into the importance of anthropogenic activities at urban canopy heights in shaping the vertical structure of O3.
RESUMEN
Early maturity is an important agronomic trait in most crops, because it can solve the problem of planting in stubble for multiple cropping as well as make full use of light and temperature resources in alpine regions, thereby avoiding damage from low temperatures in the early growth period and early frost damage in the late growth period to improve crop yield and quality. The expression of genes that determine flowering affects flowering time, which directly affects crop maturity and indirectly affects crop yield and quality. Therefore, it is important to analyze the regulatory network of flowering for the cultivation of early-maturing varieties. Foxtail millet (Setaria italica) is a reserve crop for future extreme weather and is also a model crop for functional gene research in C4 crops. However, there are few reports on the molecular mechanism regulating flowering in foxtail millet. A putative candidate gene, SiNF-YC2, was isolated based on quantitative trait loci (QTL) mapping analysis. Bioinformatics analysis showed that SiNF-YC2 has a conserved HAP5 domain, which indicates that it is a member of the NF-YC transcription factor family. The promoter of SiNF-YC2 contains light-response-, hormone-, and stress-resistance-related elements. The expression of SiNF-YC2 was sensitive to the photoperiod and was related to the regulation of biological rhythm. Expression also varied in different tissues and in response to drought and salt stress. In a yeast two-hybrid assay, SiNF-YC2 interacted with SiCO in the nucleus. Functional analysis suggested that SiNF-YC2 promotes flowering and improves resistance to salt stress.
Asunto(s)
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Tolerancia a la Sal/genética , Sitios de Carácter Cuantitativo , Fenotipo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
This work presents the development and systematic study of a method to prepare hierarchical titanium silicalite-1 (TS-1) zeolites with high tetra-coordinated framework Ti species content. The new method involves (i) the synthesis of the aged dry gel by treating the zeolite precursor at 90 °C for 24 h; and (ii) the synthesis of hierarchical TS-1 by treating the aged dry gel using tetrapropylammonium hydroxide (TPAOH) solution under hydrothermal conditions. Systematic studies were conducted to understand the effect of the synthesis conditions (including the TPAOH concentration, liquid-to-solid ratio, and treatment time) on the physiochemical properties of the resulting TS-1 zeolites, and the results showed that the condition of a TPAOH concentration of 0.1 M, liquid-to-solid ratio of 1.0, and treatment time of 9 h was ideal to enable the synthesis of hierarchical TS-1 with a Si/Ti ratio of 44. Importantly, the aged dry gel was beneficial to the quick crystallization of zeolite and assembly of nanosized TS-1 crystals with a hierarchical structure (S ext = 315 m2 g-1 and V meso = 0.70 cm3 g-1, respectively) and high framework Ti Species content, making the accessible active sites ready for promoting oxidation catalysis.
RESUMEN
One of the major pollutants influencing urban air quality in China is O3. O3 is the second most important pollutant affecting air quality in Shijiazhuang, which is the third largest city in the Beijing-Tianjin-Hebei area and the provincial capital of Hebei province. To fully understand the characteristics of O3 and volatile organic compounds (VOCs), which are O3 precursors, and the role of VOCs to ozone formation, we measured the hourly concentrations of O3 and 85 VOCs in Shijiazhuang continuously from January to November 2020, and the concentration characteristics of both together with the chemical reactivity and sources of VOCs were analyzed from a seasonal perspective. The O3 concentration in Shijiazhuang showed a phenomenon of high summer and low winter, and the VOCs showed a phenomenon of high winter and low spring. In the summer when the O3 exceedance rate is the highest, the time-domain variation characteristics of O3 were analyzed by wavelet analysis model, and the main periods controlling the O3 concentration variation in Shijiazhuang in summer 2020 were 52 days, 32 days, 19 days and 12 days. The maximum incremental reactivity (MIR) and propylene equivalence method indicated ethene, propylene and 1-pentene were common substances in the top five species of each season. The T/B, Iso-p/N-p, Iso-p/E, N-p/E, and positive matrix factorization (PMF) model showed that industrial source (18.62%-22.03%) and vehicle emission (13.20%-17.69%) were the major VOCs sources in Shijiazhuang. Therefore, to control the O3 concentration in Shijiazhuang, it is necessary to decrease alkenes emissions as well as VOCs from industrial source and vehicle emission.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Beijing , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Estaciones del Año , Urbanización , China , Ozono/análisis , Monitoreo del AmbienteRESUMEN
To control the spread of COVID-19, Shijiazhuang implemented two lockdowns of different magnitudes in 2020 (lockdown I) and 2021 (lockdown II). We analyzed the changes in air quality index (AQI), PM2.5, O3, and VOCs during the two lockdowns and the same period in 2019 and quantified the effects of anthropogenic sources during the lockdowns. The results show that AQI decreased by 13.2% and 32.4%, and PM2.5 concentrations decreased by 12.9% and 42.4% during lockdown I and lockdown II, respectively, due to the decrease in urban traffic mobility and industrial activity levels. However, the sudden and unreasonable emission reductions led to an increase in O3 concentrations by 160.6% and 108.4%, respectively, during the lockdown period. To explore the causes of the O3 surge, the major precursors NOx and VOCs were studied separately, and the main VOCs species affecting ozone formation during the lockdown period and the source variation of VOCs were identified, and it is important to note that the relationship between diurnal variation characteristics of VOCs and cooking became apparent during the lockdown period. These findings suggest that regional air quality can be improved by limiting production, but attention should be paid to the surge of O3 caused by unreasonable emission reductions, clarifying the control priorities for urban O3 management.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente , Control de Enfermedades Transmisibles , Contaminación del Aire/análisis , ChinaRESUMEN
Foxtail millet (Setaria italica) is a versatile grain and fodder crop grown in arid and semi-arid regions. It is an especially important crop for combating malnutrition in certain poverty-stricken areas of the world. Photoperiod sensitivity is a major constraint to the distribution and utilization of foxtail millet germplasm resources. Foxtail millet may be suitable as a model species for studying the photoperiod sensitivity of C4 crops. However, the genetic basis of the photoperiod response of foxtail millet remains poorly studied. To detect the genetic basis of photoperiod sensitivity-related traits, a recombinant inbred line (RIL) population consisting of 313 lines derived from a cross between the spring-sown cultivar "Longgu 3" and the summer-sown cultivar "Canggu 3" was established. The RIL population was genotyped using whole-genome re-sequencing and was phenotyped in four environments. A high-density genetic linkage map was constructed with an average distance between adjacent markers of 0.69 cM. A total of 21 quantitative trait loci (QTLs) were identified by composite interval mapping, and 116 candidate genes were predicted according to gene annotations and variations between parents, among which three genes were considered important candidate genes by the integration and overall consideration of the results from gene annotation, SNP and indel analysis, cis-element analysis, and the expression pattern of different genes in different varieties, which have different photoperiod sensitivities. A putative candidate gene, SiCOL5, was isolated based on QTL mapping analysis. The expression of SiCOL5 was sensitive to photoperiod and was regulated by biological rhythm-related genes. Function analysis suggested that SiCOL5 positively regulated flowering time. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SiCOL5 was capable of interacting with SiNF-YA1 in the nucleus.
RESUMEN
Acidithiobacillus spp. are prevalent in acid mine drainage, and they have been widely used in biomining for extracting nonferrous metals from ores. The osmotic stress generated by elevated concentrations of inorganic ions is a severe challenge for the growth of Acidithiobacillus spp. in the bioleaching process; however, the adaptation mechanism of these bacteria to high osmotic pressure remains unclear. In this study, bioinformatics analysis indicated that the osmotic stress response two-component system EnvZ-OmpR is widely distributed in Acidithiobacillus spp., while OmpRs from Acidithiobacillus spp. exhibited a far more evolutionary relationship with the well-studied OmpRs in E. coli and Salmonella typhimurium. The growth measurement of an Acidithiobacillus caldus (A. caldus) ompR-knockout strain demonstrated that OmpR is essential in the adaptation of this bacterium to high osmotic stress. The overall impact of OmpR on the various metabolic and regulatory systems of A. caldus was revealed by transcriptome analysis. The OmpR binding sequences of differentially expressed genes (DEGs) were predicted, and the OmpR box motif in A. caldus was analysed. The direct and negative regulation of EnvZ-OmpR on the tetrathionate-metabolic (tetH) cluster in A. caldus was discovered for the first time, and a co-regulation mode mediated by EnvZ-OmpR and RsrS-RsrR for the tetrathionate intermediate thiosulfate-oxidizing (S4I) pathway in this microorganism was proposed. This study reveals that EnvZ-OmpR is an indispensable regulatory system for the ability of A. caldus to cope with high osmotic stress and the significance of EnvZ-OmpR on the regulation of sulfur metabolism in A. caldus adapting to the high-salt environment.
RESUMEN
Excess soluble salts in saline soils are harmful to most plants. Understanding the biochemical responses to salts in plants and studying the salt tolerance-associated genetic resources in nature will contribute to the improvement of salt tolerance in crops. As an emerging model crop, foxtail millet (Setaria italica L.) has been regarded as a novel species for stress resistance investigation. Here, the dynamic proteomic and phosphoproteomic profiling of two foxtail millet varieties of An04 and Yugu2 with contrasting salt tolerance characteristics were investigated under salt stress. In total, 10,366 sites representing to 2,862 proteins were detected and quantified. There were 759 and 990 sites corresponding to 484 and 633 proteins identified under salinity in An04 and Yugu2, respectively, and 1,264 and 1,131 phosphorylation sites corresponding to 789 and 731 proteins were identified between these two varieties before and after salt stress, respectively. The differentially-regulated phosphoproteins (DRPPs) were mainly involved in signal transduction, regulation of gene expression, translation, ion transport, and metabolism processes. Yugu2 possessed signal perception and transduction capabilities more rapidly and had a more intense response compared with An04 upon salinity. The sucrose metabolism pathway, in particularly, might play a vital role in salt response in foxtail millet, which not only provides UDP-glucose for the cellulose synthesis and energy production, but also promotes flavonoid related synthesis to enhance the salt tolerance ability. Over-expressing the phospho-mimic sucrose synthase (SuS) (SuS S10D ) in soybean roots enhanced salt tolerance compared with over-expressing SuS lines. The knowledge of this research will shed light on elucidating the mechanisms of salt response, and pave the way for crop varieties innovation and cultivation under salinity and stresses.
RESUMEN
Soil phosphorus fractions in wetland ecosystems have received increasing attention due to its high eutrophication risks. Soil samples were collected to 40 cm depth in three sampling seasons to investigate the seasonal dynamics of organic and inorganic phosphorus fractions, bioavailability, and relationship between those and soil properties in a seasonal-flooding wetland in the Yellow River Estuary. The results showed that inorganic phosphorus (IP) and organic phosphorus (OP) contents exhibited much higher levels in the top 10 cm soils, and declined along soil profiles in spring. IP kept constant along soil profiles in fall, while OP decreased in summer and fall. They were greatly affected by water content (WC), pH, Cl-/SO42-, soil organic matter (SOM), and electrical conductivity (EC). Middle labile organic phosphorus (MLOP) and non-labile organic phosphorus (NLOP) accounted for higher percentages of total OP in summer and fall respectively than labile organic phosphorus (LOP) in spring. MLOP and NLOP levels showed a decrease along soil profiles in spring and in spring/fall, respectively, while NLOP significantly increased with depth in summer. Ca-P was the dominant IP fraction in all soils in three sampling seasons, declined with depth in spring/fall and increased in summer. Comparatively, soluble/loosely-P(S/L-P) generally decreased with depth along soil profiles in three sampling seasons. And residual P (Res-P) kept little change with depth in spring. Fe/Al-P levels decreased firstly and then increased with depth in spring and summer. Available phosphorus and potential bioavailable phosphorus contents decreased with depth in spring and summer not in fall, and had a strong significant positive correlation with WC and SOM. Alkaline phosphatase not acid phosphatase was the key factor influencing soil MLOP levels. Generally, the fractions and bioavailability of phosphorus as well as phosphatase in this region were affected by soil depth, sampling seasons, and soil properties (e.g., WC, pH, Cl-/SO42-, SOM, and EC).
Asunto(s)
Fósforo , Suelo , Disponibilidad Biológica , China , Ecosistema , Estuarios , Fósforo/análisis , Estaciones del Año , HumedalesRESUMEN
Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop because of its health benefits and adaptation to drought stress; however, reports of transcriptomic analysis of genes responding to re-watering after drought stress in foxtail millet are rare. The present study evaluated physiological parameters, such as proline content, p5cs enzyme activity, anti-oxidation enzyme activities, and investigated gene expression patterns using RNA sequencing of the drought-tolerant foxtail millet variety (Jigu 16) treated with drought stress and rehydration. The results indicated that drought stress-responsive genes were related to many multiple metabolic processes, such as photosynthesis, signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, and osmotic adjustment. Furthermore, the Δ1-pyrroline-5-carboxylate synthetase genes, SiP5CS1 and SiP5CS2, were remarkably upregulated in foxtail millet under drought stress conditions. Foxtail millet can also recover well on rehydration after drought stress through gene regulation. Our data demonstrate that recovery on rehydration primarily involves proline metabolism, sugar metabolism, hormone signal transduction, water transport, and detoxification, plus reversal of the expression direction of most drought-responsive genes. Our results provided a detailed description of the comparative transcriptome response of foxtail millet variety Jigu 16 under drought and rehydration environments. Furthermore, we identify SiP5CS2 as an important gene likely involved in the drought tolerance of foxtail millet.
Asunto(s)
Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Setaria (Planta)/metabolismo , Transducción de Señal , Estrés Fisiológico , Antioxidantes/metabolismo , Malondialdehído/metabolismo , Fotosíntesis , Hojas de la Planta , Proteínas de Plantas/metabolismo , Raíces de Plantas , Prolina/metabolismo , Análisis de Secuencia de ARN , Transcriptoma , Agua/químicaRESUMEN
Shijiazhuang, the city with the worst air quality in China, is suffering from severe ozone pollution in summer. As the key precursors of ozone generation, it is necessary to control the Volatile Organic Compounds (VOCs) pollution. To have a better understanding of the pollution status and source contribution, the concentrations of 117 ambient VOCs were analyzed from April to August 2018 in an urban site in Shijiazhuang. Results showed that the monthly average concentration of total VOCs was 66.27 ppbv, in which, the oxygenated VOCs (37.89%), alkanes (33.89%), and halogenated hydrocarbons (13.31%) were the main composite on. Eight major sources were identified using Positive Matrix Factorization modeling with an accurate VOCs emission inventory as inter-complementary methods revealed that the petrochemical industry (26.24%), other industrial sources (15.19%), and traffic source (12.24%) were the major sources for ambient VOCs in Shijiazhuang. The spatial distributions of major industrial activities emissions were identified by using geographic information statistics system, which illustrated the VOCs was mainly from the north and southeast of Shijiazhuang. The inverse trajectory analysis using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and Potential Source Contribution Function (PSCF) clearly demonstrated the features of pollutant transport to Shijiazhuang. These findings can provide references for local governments regarding control strategies to reduce VOCs emissions.
Asunto(s)
Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , China , Ciudades , Monitoreo del Ambiente , Emisiones de Vehículos/análisisRESUMEN
Salinity stress has become an expanding threat to food security worldwide. Revealing the mechanisms of salinity tolerance in plants has immense significance. Foxtail millet (Setaria italica L.) has been regarded as a model crop for exploring mechanisms under stress, considering its extreme adaptation abilities to adverse ecologies. In present study, two foxtail millet cultivars of Yugu2 and An04 with contrasting salt tolerance properties were investigated through integrative analyses of transcriptomics and metabolomics. In the transcriptomics results, 8887 and 12,249 DEGs were identified in Yugu2 and An04 in response to salinity, respectively, and 3149 of which were overlapped between two varieties. These salinity-responsive genes indicated that ion transport, redox homeostasis, phytohormone metabolism, signaling and secondary metabolism were enriched in Yugu2 by GO and KEGG analyses. The integrative omics analysis implied that phenylpropanoid, flavonoid and lignin biosynthesis pathways, and lysophospholipids were vital in determining the foxtail millet salinity tolerance. Importantly, the tolerance of Yugu2 attributed to higher efficiencies of ion channel and antioxidant system. All these provide a comprehensive regulatory network of foxtail millet to cope with salinity, and shed some lights on salt tolerance which is relevant for other cereal crops.
Asunto(s)
Metaboloma , Proteínas de Plantas/metabolismo , Salinidad , Semillas/crecimiento & desarrollo , Setaria (Planta)/crecimiento & desarrollo , Estrés Fisiológico , Transcriptoma , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Filogenia , Proteínas de Plantas/genética , Tolerancia a la Sal , Semillas/genética , Semillas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismoRESUMEN
China is an agricultural country, approximately producing more than 1000 million tons of crop straw in 2018. The utilization of straw as energy can replace fossil fuels, protect environment and guarantee energy security. Biomass fuel has been regarded as renewable energy with the characteristics of carbon-neutral, and low emissions of nitrogen oxides and sulfur dioxide. Biomass molded fuel (BMF), a major type of biomass fuel, has attracted particular attention. Currently, the BMF industry in China develops slowly. To achieve the rapid and healthy development of the industry, in this paper, a three-part standard system as fuel side, production and combustion equipment side and pollutant emission side is proposed to regulate the BMF market. Simultaneously, a policy system consisting of legislation, development plans and incentive measures also is introduced to maintain policy consistency and continuity.
Asunto(s)
Combustibles Fósiles , Óxidos de Nitrógeno/análisis , Biomasa , China , Energía RenovableRESUMEN
As an important type of aquatic ecosystem, lake ecosystems play an irreplaceable role in providing water resources, controlling floods, regulating the regional climate, and maintaining the regional ecological balance. However, multiple lake ecosystems have been threatened by the expansion of aquatic macrophytes and the resulting bioaccumulation, which accelerates the process of lake terrestrialization. Therefore, it is necessary to identify the safe operating space of macrophyte biomass in order to control the terrestrialization of shallow lakes. In this study, we investigated the biomasses of dominant species and community types at different growth stages in different terrestrialized zones for a typical shallow lake in North China. Then, we developed a suitable method for estimating the safe operating space for the aquatic macrophyte biomass in different terrestrialization stages. Our results showed that the aquatic macrophyte biomass generally increased with the increasing terrestrialization stage. In addition, the biomass in September was lower than that in May. On the community scale, the biomass of Phragmites australis, Phragmites australis - Ceratophyllum demersum, and Nelumbo nucifera - Ceratophyllum demersum - Typha orientalis communities was significantly higher than that of Potamogeton pectinatus and Potamogeton pectinatus - Nelumbo nucifera communities. Terrestrialization exhibited lower impacts on plant biomass in May, whereas a greater impact of terrestrialization was observed in September. Generally, single-species communities had higher plant biomass than mixed communities. The target management years for different terrestrialized zones were established to calculate the safe operating space of macrophyte biomass. The current biomass values were much higher than those calculated for the safe operating space, especially in September and for the P. australis and P. australis - C. demersum communities, indicating that there is high pressure to manage these communities. The approach proposed in the study provides a scientific reference for macrophyte management to control the terrestrialization status of grass-type shallow lakes.
Asunto(s)
Lagos , Poaceae , Biomasa , China , EcosistemaRESUMEN
The heterogeneous distribution of soil salinity across the rhizosphere can moderate salt injury and improve sorghum growth. However, the essential molecular mechanisms used by sorghum to adapt to such environmental conditions remain uncharacterized. The present study evaluated physiological parameters such as the photosynthetic rate, antioxidative enzyme activities, leaf Na+ and K+ contents, and osmolyte contents and investigated gene expression patterns via RNA sequencing (RNA-seq) analysis under various conditions of nonuniformly distributed salt. Totals of 5691 and 2047 differentially expressed genes (DEGs) in the leaves and roots, respectively, were identified by RNA-seq under nonuniform (NaCl-free and 200 mmol·L-1 NaCl) and uniform (100 mmol·L-1 and 100 mmol·L-1 NaCl) salinity conditions. The expression of genes related to photosynthesis, Na+ compartmentalization, phytohormone metabolism, antioxidative enzymes, and transcription factors (TFs) was enhanced in leaves under nonuniform salinity stress compared with uniform salinity stress. Similarly, the expression of the majority of aquaporins and essential mineral transporters was upregulated in the NaCl-free root side in the nonuniform salinity treatment, whereas abscisic acid (ABA)-related and salt stress-responsive TF transcripts were more abundant in the high-saline root side in the nonuniform salinity treatment. In contrast, the expression of the DEGs identified in the nonuniform salinity treatment remained virtually unaffected and was even downregulated in the uniform salinity treatment. The transcriptome findings might be supportive of the increased photosynthetic rate, reduced Na+ levels, increased antioxidative capability in the leaves and, consequently, the growth recovery of sorghum under nonuniform salinity stress as well as the inhibited sorghum growth under uniform salinity conditions. The increased expression of salt resistance genes activated in response to the nonuniform salinity distribution implied that the cross-talk between the nonsaline and high-saline sides of the roots exposed to nonuniform salt stress is potentially regulated.
Asunto(s)
Raíces de Plantas/fisiología , Estrés Salino , Tolerancia a la Sal/genética , Suelo/química , Sorghum/fisiología , Ácido Abscísico/metabolismo , Acuaporinas/metabolismo , Proteínas Portadoras/metabolismo , Producción de Cultivos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Potasio/análisis , Potasio/metabolismo , Rizosfera , Salinidad , Sodio/análisis , Sodio/metabolismo , Cloruro de Sodio/efectos adversosRESUMEN
In-situ incubation experiments were performed in typical tidal flooding wetlands and seasonal flooding wetlands in the Yellow River Delta of China to investigate sediment organic phosphorus (OP) mineralization and its influencing factors. The results showed that the sediment net P mineralization rate (RNPM) exhibited consistent seasonal variations in both wetlands, and it was more stable in the tidal flooding wetlands than in the seasonal flooding wetlands. Sediment P mineralization was greatly influenced by plant uptake and flooding erosion, and the freshwater input by flow-sediment regulation replenished the inorganic phosphorus (IP) pool in the wetland sediments. The OP, IP and total P in the sediments of the tidal flooding wetlands were in a state of dynamic equilibrium throughout the plant growing season, and plant uptake peaked during the period from August to September. In the seasonal flooding wetlands, rainfall and flow-sediment regulation were the key factors influencing the conversion between OP and IP. Besides sediment salinity and pH, microbial biomass and enzyme activities were also the key factors influencing the sediment RNPM in both wetlands. The findings of this study indicated that flooding frequencies and salinity could highly impact sediment P mineralization, and that the IP levels in sediments might be influenced by wetland hydrology and salinity.
Asunto(s)
Monitoreo del Ambiente , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Humedales , China , Inundaciones , Sedimentos Geológicos/químicaRESUMEN
Identifying protein coding regions in DNA sequences by computational methods is an active research topic. Welan gum produced by Sphingomonas sp. WG has great application potential in oil recovery and concrete construction industry. Predicting the coding regions in the Sphingomonas sp. WG genome and addressing the mechanism underlying the explanation for the synthesis of Welan gum metabolism is an important issue at present. In this study, we apply a self adaptive spectral rotation (SASR, for short) method, which is based on the investigation of the Triplet Periodicity property, to predict the coding regions of the whole-genome data of Sphingomonas sp. WG without any previous training process, and 1115 suspected gene fragments are obtained. Suspected gene fragments are subjected to a similarity search against the non-redundant protein sequences (nr) database of NCBI with blastx, and 762 suspected gene fragments have been labeled as genes in the nr database.