Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
Mater Today Bio ; 28: 101219, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39280112

RESUMEN

Chemotherapy and radiotherapy in combination with sequence regimens are recognized as the current major strategy for suppressing postoperative tumor recurrence. However, systemic side effects and poor in-field cooperation of the two therapies seriously impair the therapeutic efficacy of patients. The combination of brachytherapy and chemotherapy through innovative biomaterials has proven to be an important strategy to achieve synergistic effects of radiotherapy and chemotherapy in-time and in-field. However, for postoperative chemoradiotherapy, as far as we know, there are few relevant reports. Herein, an injectable pH-responsive polypeptide-polysaccharide depot for concurrent in situ chemotherapy and brachytherapy was developed by encapsulating vincristine into iodine-125 radionuclide labeled hydrogel. This depot hydrogel was prepared by dynamic covalent bonds of Schiff base between aldehydeated hyaluronic acid and polyethylene glycol-polytyrosine. Therefore, this hydrogel enables smart response to tumor acidic microenvironment, rapid release of the encapsulated vincristine and an enhanced uptake effect by tumor cells, which significantly reduces IC50 of vincristine for the anaplasia Wilms' tumor cells in vitro. This depot hydrogel shows excellent stability and biocompatibility, and maintains for 14 days after in situ injection in a postoperative model of anaplasia Wilms' tumor. After injection at the cavity of tumor excision, responsively-released vincristine and the radioactive iodine-125 exerted excellent killing effects on residual tumor cells, inhibiting tumor relapse and liver metastasis of the recurrent tumor. Hence, this study proposes an effective therapeutic strategy for inhibiting anaplasia Wilms' tumor recurrence, which provides a new approach for concurrent postoperative chemo-radiotherapy and a desirable guidance in regimen execution of pediatric refractory tumors.

2.
Ecotoxicol Environ Saf ; 284: 116988, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236653

RESUMEN

Hypospadias is one of the most common congenital anomalies of the male urogenital system, and di(2-ethylhexyl) phthalate (DEHP), a widely used endocrine-disrupting chemical (EDC), is considered a significant risk factor for this condition. Mono-2-ethylhexyl phthalate (MEHP), the toxic active metabolite of DEHP, has been proven to affect penile development and ultimately result in the hypospadias phenotype. However, while it is acknowledged that hypospadias arises from the aberrant development of multiple penile tissues, the specific impact of MEHP on human foreskin tissue development and its underlying molecular mechanisms of action remain unclear. In this study, we constructed an in vitro toxicity assay for MEHP using human foreskin fibroblasts and employed high-throughput RNA sequencing to investigate the molecular mechanisms subserving the defects in cellular function. We subsequently conducted multi-omics data analysis using public databases to analyze key target genes, and identified MMP11 as a chief downstream gene responsible for the effects of MEHP on HFF-1 cell migration. Through molecular docking analysis and molecular biology experiments, we further demonstrated that the nuclear receptor PPAR-gamma was activated upon binding with MEHP, leading to the suppression of MMP11 expression. Additionally, we found that epigenetic modifications induced by MEHP were also involved in its pathogenic effects on hypospadias. Our research highlights the crucial role of impaired cellular proliferation and migration in MEHP-induced hypospadias. We identified the MEHP/PPAR-gamma/MMP11 pathway as a novel pathogenic mechanism, providing important potential targets for future preventive strategies with respect to hypospadias.

3.
J Phys Chem Lett ; 15(32): 8265-8271, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106046

RESUMEN

The properties of liquid-liquid interfaces are intricately linked to its structure, with a particular focus on the concentration distribution within the interface. To obtain precise information regarding the concentration distribution, we have developed a high-resolution soft X-ray imaging method for liquid-liquid interfaces. This work focused on representative partially miscible systems, analyzing the interfacial concentration distribution profiles of water-alkanols under both steady-state and dynamic processes, and obtaining the diffusion coefficients of different water concentrations in alkanols. Significant disparities in concentration distributions and the concentration-related diffusion coefficients were observed despite comparable diffusion distances within the same system across different states. Meanwhile, it was found that alkanols exhibit adsorption phenomena at the interface. This newfound knowledge serves as a crucial stepping stone toward a deeper understanding of partially miscible systems. Our study opens a way to explore liquid-liquid interface information with high-resolution.

4.
Environ Sci Technol ; 58(32): 14158-14168, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088650

RESUMEN

The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.


Asunto(s)
Macrófagos , Polietileno , Corona de Proteínas , Macrófagos/metabolismo , Corona de Proteínas/metabolismo , Corona de Proteínas/química , Animales , Ratones , Nanopartículas/química , Humanos
5.
JHEP Rep ; 6(8): 101101, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091991

RESUMEN

Background & Aims: Persistent cholestasis has been associated with poor prognosis after orthotopic liver transplantation. In this study, we aimed to investigate how the accumulation of tauro-beta-muricholic acid (TßMCA), resulting from the reprogramming of bile acid (BA) metabolism during liver ischemia/reperfusion (IR) stress, attenuates liver inflammation. Methods: Ingenuity Pathway Analysis was performed using transcriptome data from a murine hepatic IR model. Three different models of hepatic IR (liver warm IR, bile duct separation-IR, common bile duct ligation-IR) were employed. We generated adeno-associated virus-transfected mice and CD11b-DTR mice to assess the role of BAs in regulating the myeloid S1PR2-GSDMD axis. Hepatic BA levels were analyzed using targeted metabolomics. Finally, the correlation between the reprogramming of BA metabolism and hepatic S1PR2 levels was validated through RNA-seq of human liver transplant biopsies. Results: We found that BA metabolism underwent reprogramming in murine hepatocytes under IR stress, leading to increased synthesis of TßMCA, catalyzed by the enzyme CYP2C70. The levels of hepatic TßMCA were negatively correlated with the severity of hepatic inflammation, as indicated by the serum IL-1ß levels. Inhibition of hepatic CYP2C70 resulted in reduced TßMCA production, which subsequently increased serum IL-1ß levels and exacerbated IR injury. Moreover, our findings suggested that TßMCA could inhibit canonical inflammasome activation in macrophages and attenuate inflammatory responses in a myeloid-specific S1PR2-GSDMD-dependent manner. Additionally, Gly-ßMCA, a derivative of TßMCA, could effectively attenuate inflammatory injury in vivo and inhibit human macrophage pyroptosis in vitro. Conclusions: IR stress orchestrates hepatic BA metabolism to generate TßMCA, which attenuates hepatic inflammatory injury by inhibiting the myeloid S1PR2-GSDMD axis. Bile acids have immunomodulatory functions in liver reperfusion injury that may guide therapeutic strategies. Impact and implications: Our research reveals that liver ischemia-reperfusion stress triggers reprogramming of bile acid metabolism. This functions as an adaptive mechanism to mitigate inflammatory injury by regulating the S1PR2-GSDMD axis, thereby controlling the release of IL-1ß from macrophages. Our results highlight the crucial role of bile acids in regulating hepatocyte-immune cell crosstalk, which demonstrates an immunomodulatory function in liver reperfusion injury that may guide therapeutic strategies targeting bile acids and their receptors.

6.
Chem Biol Interact ; 400: 111144, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002877

RESUMEN

Organophosphate flame retardants (OPFRs) pose the significant risks to the environment and human health and have become a serious public health issue. Tricresyl phosphates (TCPs), a group of aryl OPFRs, exhibit neurotoxicity and endocrine disrupting toxicity. However, the binding mechanisms between TCPs and human serum albumin (HSA) remain unknown. In this study, through fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy, molecular docking and molecular dynamics (MD), tri-para-cresyl phosphate (TpCP) was selected to explore potential interactions between HSA and TCPs. The results of the fluorescence spectroscopy demonstrated that a decrease in the fluorescence intensity of HSA and a blue shift were observed with the increasing concentrations of TpCP. The binding constant (Ka) was 2.575 × 104 L/mol, 4.701 × 104 L/mol, 5.684 × 104 L/mol and 9.482 × 104 L/mol at 293 K, 298 K, 303 K, and 310 K, respectively. The fluorescence process between HSA and TpCP involved a mix of static and dynamic quenching mechanism. The gibbs free energy (ΔG0) of HSA-TpCP system was -24.452 kJ/mol, -25.907 kJ/mol, -27.363 kJ/mol, and - 29.401 kJ/mol at 293 K, 298 K, 303 K, and 310 K, respectively, suggesting that the HSA-TpCP reaction was spontaneous. The enthalpy change (ΔH0) and thermodynamic entropy change (ΔS0) of the HSA-TpCP system were 60.83 kJ/mol and 291.08 J/(mol·>k), respectively, indicating that hydrophobic force was the major driving force in the HSA-TpCP complex. Furthermore, multispectral analysis also revealed that TpCP could alter the microenvironment of tryptophan residue and the secondary structure of HSA and bind with the active site I of HSA. Molecular docking and MD simulations confirmed that TpCP could spontaneously form a stable complex with HSA, which was consistent with the fluorescence experimental results. This study provides novel insights into the mechanisms of underlying the transportation and distribution of OPFRs in humans.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica , Humanos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Retardadores de Llama/metabolismo , Espectrofotometría Ultravioleta , Sitios de Unión , Tritolilfosfatos/química , Tritolilfosfatos/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Enlace de Hidrógeno
7.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000957

RESUMEN

Visual ranging technology holds great promise in various fields such as unmanned driving and robot navigation. However, complex dynamic environments pose significant challenges to its accuracy and robustness. Existing monocular visual ranging methods are susceptible to scale uncertainty, while binocular visual ranging is sensitive to changes in lighting and texture. To overcome the limitations of single visual ranging, this paper proposes a fusion method for monocular and binocular visual ranging based on an adaptive Unscented Kalman Filter (AUKF). The proposed method first utilizes a monocular camera to estimate the initial distance based on the pixel size, and then employs the triangulation principle with a binocular camera to obtain accurate depth. Building upon this foundation, a probabilistic fusion framework is constructed to dynamically fuse monocular and binocular ranging using the AUKF. The AUKF employs nonlinear recursive filtering to estimate the optimal distance and its uncertainty, and introduces an adaptive noise-adjustment mechanism to dynamically update the observation noise based on fusion residuals, thus suppressing outlier interference. Additionally, an adaptive fusion strategy based on depth hypothesis propagation is designed to autonomously adjust the noise prior of the AUKF by combining current environmental features and historical measurement information, further enhancing the algorithm's adaptability to complex scenes. To validate the effectiveness of the proposed method, comprehensive evaluations were conducted on large-scale public datasets such as KITTI and complex scene data collected in real-world scenarios. The quantitative results demonstrate that the fusion method significantly improves the overall accuracy and stability of visual ranging, reducing the average relative error within an 8 m range by 43.1% and 40.9% compared to monocular and binocular ranging, respectively. Compared to traditional methods, the proposed method significantly enhances ranging accuracy and exhibits stronger robustness against factors such as lighting changes and dynamic targets. The sensitivity analysis further confirmed the effectiveness of the AUKF framework and adaptive noise strategy. In summary, the proposed fusion method effectively combines the advantages of monocular and binocular vision, significantly expanding the application range of visual ranging technology in intelligent driving, robotics, and other fields while ensuring accuracy, robustness, and real-time performance.

8.
Acta Pharmacol Sin ; 45(9): 1848-1860, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38719954

RESUMEN

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.


Asunto(s)
Angiotensina II , Proteína Forkhead Box O3 , Hipertensión , Ratones Noqueados , Músculo Liso Vascular , Transducción de Señal , Remodelación Vascular , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Músculo Liso Vascular/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Ratones , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/genética , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Cultivadas
9.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2818-2827, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812181

RESUMEN

This study aims to explore the potential metabolic pathways and targets of Puerariae Thomsonii Radix in the clinical treatment of mild dyslipidemia. UPLC-Q-TOF-MS and EASY-nLC-timsTOF-Pro2 were employed to perform metabolomic and proteomic analyses of the plasma samples collected from the patients with mild dyslipidemia at baseline and after 12 weeks of treatment with Puerariae Thomsonii Radix. The multivariate statistical analysis was carried out for comparison between groups, and the correlation analysis was performed for the metabolites and proteins closely related to mild dyslipidemia with the blood lipid indexes. The possible pathways and targets for mitigating mild dyslipidemia were screened out by the Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. The results showed that 56 differential metabolites and 78 differential proteins in the plasma of patients were associated with Puerariae Thomsonii Radix treatment. In addition, changes were detected for the proteins or metabolites(ApoB-100, 9,10-DHOME, GAPDH, PGK1, PGAM1, ENO1, etc.) involved in lipoprotein, lipid, and glucose metabolism and the proteins or metabolites(oxidized phospholipid, PLA2G7, LTA4H, etc.) related to inflammation and oxidative stress. Puerariae Thomsonii Radix may down-regulate the overexpression of ApoB-100, activate the peroxisome proliferator-activated receptor α/γ(PPARα/γ), promote the catabolism of fat and glycerol, and alleviate the oxidative stress mediated by oxidized phospholipids and leukotriene B4(LTB4) in the treatment of mild dyslipidemia.


Asunto(s)
Medicamentos Herbarios Chinos , Dislipidemias , Metabolómica , Proteómica , Pueraria , Humanos , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Pueraria/química , Masculino , Femenino , Persona de Mediana Edad , Adulto
10.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755605

RESUMEN

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Fenotipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Receptores CCR2/genética , Linfocitos T CD8-positivos/inmunología , Antígenos CD28/genética
11.
JACS Au ; 4(3): 893-902, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38559738

RESUMEN

Synchrotron-based X-ray microscopy (XRM) has garnered widespread attention from researchers due to its high spatial resolution and excellent energy (element) resolution. Existing molecular probes suitable for XRM include immune probes and genetic labeling probes, enabling the precise imaging of various biological targets within cells. However, immune labeling techniques are prone to cross-interference between antigens and antibodies. Genetic labeling technologies have limited systems that allow express markers independently, and moreover, genetically encoded labels based on catalytic polymerization lack a fixed morphology. When applied to cell imaging, this can result in reduced localization accuracy due to the diffusion of labels within the cells. Therefore, both techniques face challenges in simultaneously labeling multiple biotargets within cells and achieving high-precision imaging. In this work, we applied the click reaction and developed a third category of imaging probes suitable for XRM, termed clickable X-ray nanoprobes (Click-XRN). Click-XRN consists of two components: an X-ray-sensitive multicolor imaging module and a particle-size-controllable morphology module. Efficient identification of intra- and extracellular biotargets is achieved through click reactions between the probe and biomolecules. Click-XRN possesses a controllable particle size, and its loading of various metal ions provides distinctive signals for imaging under XRM. Based on this, we optimized the imaging energy of Click-XRN with different particle sizes, enabling single-color and two-color imaging of the cell membrane, cell nucleus, and mitochondria with nanoscale spatial nanometers. Our work provides a potent molecular tool for investigating cellular activities through XRM.

12.
Med Phys ; 51(6): 4133-4142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578373

RESUMEN

BACKGROUND: Pulmonary emphysema is a part of chronic obstructive pulmonary disease, which is an irreversible chronic respiratory disease. In order to avoid further damage to lung tissue, early diagnosis and treatment of pulmonary emphysema is essential. PURPOSE: Early pulmonary emphysema diagnosis is difficult with conventional radiographic imaging. Recently, x-ray phase contrast imaging has proved to be an effective and promising imaging strategy for soft tissue, due to its high sensitivity and multi-contrast. The aim of this study is to diagnose pulmonary emphysema early utilizing an x-ray Talbot-Lau interferometer (TLI). METHODS: We successfully established the mouse model of emphysema by porcine pancreatic elastase treatment, and then used the established x-ray TLI to perform imaging experiments on the mice with different treatment time. The traditional absorption CT and phase contrast CT were obtained simultaneously through TLI. The CT results and histopathology of mice lung in different treatment time were quantitatively analyzed. RESULTS: By imaging mice lungs, it can be found that phase contrast has higher sensitivity than absorption contrast in early pulmonary emphysema. The results show that the phase contrast signal could distinguish the pulmonary emphysema earlier than the conventional attenuation signal, which can be consistent with histological images. Through the quantitative analysis of pathological section and phase contrast CT, it can be found that there is a strong linear correlation. CONCLUSIONS: In this study, we quantitatively analyze mean linear intercept of histological sections and CT values of mice. The results show that the phase contrast signal has higher imaging sensitivity than the attenuation signal. X-ray TLI multi-contrast imaging is proved as a potential diagnostic method for early pulmonary emphysema in mice.


Asunto(s)
Interferometría , Enfisema Pulmonar , Animales , Enfisema Pulmonar/diagnóstico por imagen , Ratones , Interferometría/instrumentación , Tomografía Computarizada por Rayos X , Pulmón/diagnóstico por imagen , Diagnóstico Precoz , Ratones Endogámicos C57BL
13.
Front Pharmacol ; 15: 1355081, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455962

RESUMEN

Background: A vast number of researchers have discovered high levels of human epidermal growth factor receptor-2 (HER2) expression in urothelial carcinoma (UC), but they do not use a uniform scoring system. Based on the 2021 edition of clinical pathological expert consensus on HER-2 testing in UC in China, we investigated the expression level and clinical significance of HER2 in high-grade UC. Furthermore, we looked at the prognosis of patients with locally advanced/metastatic UC after combining HER2 targeting antibody-drug conjugates (ADC) medication disitamab vedotin (DV) with programmed cell death protein 1 (PD-1) inhibitor tislelizumab. Patients and methods: From 2019 to 2022, we collected paraffin specimens of UC from the Department of Urology at the Provincial Hospital Affiliated to Shandong First Medical University. HER2 expression-related factors were investigated. Patients with advanced UC who have failed systemic chemotherapy at least once and had received immune checkpoint inhibitor (ICI) medication during second-line treatment were selected and treated with DV in combination with tislelizumab. We assessed the therapy's efficacy and safety. Results: 185 patients with high-grade UC were included in this investigation. 127 patients (68.7%) were HER2 positive (IHC 2+/3+) according to the 2021 Clinical pathological expert consensus on HER2 testing in UC in China. The clinical stage of UC differed statistically significantly between the HER2-and HER2+ groups (p = 0.019). Sixteen advanced UC patients were treated with DV and tislelizumab for a median of 14 months. The disease control rate was 87.5%, while the objective response rate (ORR) was 62.5%. The ORR of HER2+ individuals was higher than that of HER2-individuals (70.0% vs. 50.0%). The median progression-free survival or overall survival was not reached. In this study, the incidence of treatment-related adverse events was 68.8% (11/16), with all of them being grade 1 or 2 adverse reactions. Conclusion: HER2 protein expressed at a high percentage in UC, and 68.7% patients expressed HER2 positive (IHC 2+/3+). HER2+ expression is positively correlated with higher clinical stage of UC. HER2 targeted ADC drug disitamab vedotin combining with PD-1 inhibitor tislelizumab has shown efficacy, safety and controllable adverse reactions in the treatment of advanced UC.

14.
J Cell Biochem ; 125(5): e30551, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38465779

RESUMEN

Neuregulin-4 (Nrg4) and melatonin play vital roles in endocrine diseases. However, there is little discussion about the function and potential mechanism of Nrg4 and melatonin in prolactin (PRL) regulation. The human normal pituitary data from Gene Expression Profiling Interactive Analysis (GEPIA) database was used to explore the correlation between NRG4 and PRL. The expression and correlation of NRG4 and PRL were determined by Immunofluorescence staining (IF) and human normal pituitary tissue microarray. Western Blot (WB) was used to detect the expression of PRL, p-ErbB2/3/4, ErbB2/3/4, p-Erk1/2, Erk1/2, p-Akt and Akt in PRL-secreting pituitary GH3 and RC-4B/C cells treated by Nrg4, Nrg4-small interfering RNA, Erk1/2 inhibitor FR180204 and melatonin. The expression of NRG4 was significantly positively correlated with that of PRL in the GEPIA database and normal human pituitary tissues. Nrg4 significantly increased the expression and secretion of PRL and p-Erk1/2 expression in GH3 cells and RC-4B/C cells. Inhibition of Nrg4 significantly inhibited PRL expression. The increased levels of p-Erk1/2 and PRL induced by Nrg4 were abolished significantly in response to FR180204 in GH3 and RC-4B/C cells. Additionally, Melatonin promotes the expression of Nrg4, p-ErbB4, p-Erk1/2, and PRL and can further promote the expression of p-Erk1/2 and PRL in combination with Nrg4. Further investigation into the function of Nrg4 and melatonin on PRL expression and secretion may provide new clues to advance the clinical control of prolactinomas and hyperprolactinemia.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Melatonina , Neurregulinas , Prolactina , Receptor ErbB-4 , Melatonina/farmacología , Humanos , Prolactina/metabolismo , Receptor ErbB-4/metabolismo , Receptor ErbB-4/genética , Neurregulinas/metabolismo , Neurregulinas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Hipófisis/metabolismo , Hipófisis/citología , Animales , Ratas
15.
J Cell Mol Med ; 28(6): e18151, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38429903

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, the incidence of which increases with age, and the pathological changes in the brain are irreversible. Recent studies have highlighted the essential role of long noncoding RNAs (lncRNAs) in AD by acting as competing endogenous RNAs (ceRNAs). Our aim was to construct lncRNA-associated ceRNA regulatory networks composed of potential biomarkers for the early stage of AD. AD related datasets come from AlzData and GEO databases. The R package 'Limma' identifies differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases for functional enrichment analysis. Protein-protein interactions (PPIs) in DEGs were constructed in the STRING database, and Cytoscape software identified DEGs. Convergent functional genomics (CFG) analysis of differentially expressed hub genes (referred to as early-DEGs) in the brain before the development of AD pathology. The AlzData database analyses the expression levels of early-DEGs in different nerve cells. The lncRNA-miRNA-mRNA regulatory network was established according to the ceRNA hypothesis. We identified four lncRNAs (XIST, NEAT1, KCNQ1OT1 and HCG18) and four miRNAs (hsa-let-7c-5p, hsa-miR-107, hsa-miR-129-2-3p and hsa-miR-214-3p) were preliminarily identified as potential biomarkers for early AD, competitively regulating Atp6v0b, Atp6v1e1 Atp6v1f and Syt1. This study indicates that NEAT1, XIST, HCG18 and KCNQ1OT1 act as ceRNAs in competitive binding with miRNAs to regulate the expression of Atp6v0b, Atp6v1e1, Atp6v1f and Syt1 before the occurrence of pathological changes in AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , ARN Largo no Codificante , Humanos , Enfermedad de Alzheimer/genética , ARN Largo no Codificante/genética , Unión Competitiva , MicroARNs/genética , Biomarcadores , Redes Reguladoras de Genes
16.
Adv Mater ; 36(21): e2311145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334458

RESUMEN

High-quality perovskite films are essential for achieving high performance of optoelectronic devices; However, solution-processed perovskite films are known to suffer from compositional and structural inhomogeneity due to lack of systematic control over the kinetics during the formation. Here, the microscopic homogeneity of perovskite films is successfully enhanced by modulating the conversion reaction kinetics using a catalyst-like system generated by a foaming agent. The chemical and structural evolution during this catalytic conversion is revealed by a multimodal synchrotron toolkit with spatial resolutions spanning many length scales. Combining these insights with computational investigations, a cyclic conversion pathway model is developed that yields exceptional perovskite homogeneity due to enhanced conversion, having a power conversion efficiency of 24.51% for photovoltaic devices. This work establishes a systematic link between processing of precursor and homogeneity of the perovskite films.

17.
Neural Netw ; 173: 106166, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367355

RESUMEN

The limited transparency of the inner decision-making mechanism in deep neural networks (DNN) and other machine learning (ML) models has hindered their application in several domains. In order to tackle this issue, feature attribution methods have been developed to identify the crucial features that heavily influence decisions made by these black box models. However, many feature attribution methods have inherent downsides. For example, one category of feature attribution methods suffers from the artifacts problem, which feeds out-of-distribution masked inputs directly through the classifier that was originally trained on natural data points. Another category of feature attribution method finds explanations by using jointly trained feature selectors and predictors. While avoiding the artifacts problem, this new category suffers from the Encoding Prediction in the Explanation (EPITE) problem, in which the predictor's decisions rely not on the features, but on the masks that selects those features. As a result, the credibility of attribution results is undermined by these downsides. In this research, we introduce the Double-sided Remove and Reconstruct (DoRaR) feature attribution method based on several improvement methods that addresses these issues. By conducting thorough testing on MNIST, CIFAR10 and our own synthetic dataset, we demonstrate that the DoRaR feature attribution method can effectively bypass the above issues and can aid in training a feature selector that outperforms other state-of-the-art feature attribution methods. Our code is available at https://github.com/dxq21/DoRaR.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación
18.
BMC Bioinformatics ; 25(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166644

RESUMEN

According to the expression of miRNA in pathological processes, miRNAs can be divided into oncogenes or tumor suppressors. Prediction of the regulation relations between miRNAs and small molecules (SMs) becomes a vital goal for miRNA-target therapy. But traditional biological approaches are laborious and expensive. Thus, there is an urgent need to develop a computational model. In this study, we proposed a computational model to predict whether the regulatory relationship between miRNAs and SMs is up-regulated or down-regulated. Specifically, we first use the Large-scale Information Network Embedding (LINE) algorithm to construct the node features from the self-similarity networks, then use the General Attributed Multiplex Heterogeneous Network Embedding (GATNE) algorithm to extract the topological information from the attribute network, and finally utilize the Light Gradient Boosting Machine (LightGBM) algorithm to predict the regulatory relationship between miRNAs and SMs. In the fivefold cross-validation experiment, the average accuracies of the proposed model on the SM2miR dataset reached 79.59% and 80.37% for up-regulation pairs and down-regulation pairs, respectively. In addition, we compared our model with another published model. Moreover, in the case study for 5-FU, 7 of 10 candidate miRNAs are confirmed by related literature. Therefore, we believe that our model can promote the research of miRNA-targeted therapy.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional , Algoritmos , Oncogenes
19.
J Immunother Cancer ; 12(1)2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38199610

RESUMEN

BACKGROUND: As an unconventional subpopulation of T lymphocytes, γδ T cells can recognize antigens independently of major histocompatibility complex restrictions. Recent studies have indicated that γδ T cells play contrasting roles in tumor microenvironments-promoting tumor progression in some cancers (eg, gallbladder and leukemia) while suppressing it in others (eg, lung and gastric). γδ T cells are mainly enriched in peripheral mucosal tissues. As the cervix is a mucosa-rich tissue, the role of γδ T cells in cervical cancer warrants further investigation. METHODS: We employed a multiomics strategy that integrated abundant data from single-cell and bulk transcriptome sequencing, whole exome sequencing, genotyping array, immunohistochemistry, and MRI. RESULTS: Heterogeneity was observed in the level of γδ T-cell infiltration in cervical cancer tissues, mainly associated with the tumor somatic mutational landscape. Definitely, γδ T cells play a beneficial role in the prognosis of patients with cervical cancer. First, γδ T cells exert direct cytotoxic effects in the tumor microenvironment of cervical cancer through the dynamic evolution of cellular states at both poles. Second, higher levels of γδ T-cell infiltration also shape the microenvironment of immune activation with cancer-suppressive properties. We found that these intricate features can be observed by MRI-based radiomics models to non-invasively assess γδ T-cell proportions in tumor tissues in patients. Importantly, patients with high infiltration levels of γδ T cells may be more amenable to immunotherapies including immune checkpoint inhibitors and autologous tumor-infiltrating lymphocyte therapies, than to chemoradiotherapy. CONCLUSIONS: γδ T cells play a beneficial role in antitumor immunity in cervical cancer. The abundance of γδ T cells in cervical cancerous tissue is associated with higher response rates to immunotherapy.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/terapia , Microambiente Tumoral , Multiómica , Inmunoterapia , Pronóstico
20.
Eur J Cardiovasc Nurs ; 23(6): 627-634, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38165000

RESUMEN

AIMS: To understand the compliance, influencing factors, and action path of family cardiac rehabilitation exercise prescriptions for children after congenital heart disease surgery. METHODS AND RESULTS: A random sampling method was used to select 200 paediatric patients and their parents from a paediatric hospital in Shanghai. Among them, 57 cases (28.5%) of children's families followed the cardiac rehabilitation exercise prescription. Path analysis showed that peak oxygen uptake exerted a negative impact on the compliance of family cardiac-rehabilitation prescriptions for patients after congenital heart disease surgery through doctor-patient trust, with a standardized path coefficient of -0.246 (P = 0.001). Disease-related knowledge exerted a positive effect on the compliance of family cardiac-rehabilitation prescriptions for children after congenital heart surgery through doctor-patient trust, with a standardized path coefficient of 0.353 (P < 0.001). The dimension of friend support in social support had a direct positive effect on the compliance of family cardiac-rehabilitation prescriptions for children after cardiac surgery, with a standardized path coefficient of 0.641 (P = 0.006). CONCLUSION: The compliance of cardiac rehabilitation exercise prescription in children with congenital heart disease is not good and is affected by many factors, and there is a complex path relationship between various factors; the kilogram oxygen consumption of the child, the disease-related knowledge of the caregiver, and social support all play important roles in the compliance of the child's family's health prescription. REGISTRATION: ChiCTR2200062022.


Asunto(s)
Rehabilitación Cardiaca , Cardiopatías Congénitas , Cooperación del Paciente , Confianza , Humanos , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/rehabilitación , Cardiopatías Congénitas/psicología , Masculino , Femenino , Niño , Cooperación del Paciente/estadística & datos numéricos , Cooperación del Paciente/psicología , Preescolar , Rehabilitación Cardiaca/psicología , China , Terapia por Ejercicio/métodos , Lactante , Apoyo Social , Adolescente , Procedimientos Quirúrgicos Cardíacos/rehabilitación , Procedimientos Quirúrgicos Cardíacos/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...