Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2381, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493178

RESUMEN

Candida auris has become a serious threat to public health. The mechanisms of how this fungal pathogen adapts to the mammalian host are poorly understood. Here we report the rapid evolution of an adaptive C. auris multicellular aggregative morphology in the murine host during systemic infection. C. auris aggregative cells accumulate in the brain and exhibit obvious advantages over the single-celled yeast-form cells during systemic infection. Genetic mutations, specifically de novo point mutations in genes associated with cell division or budding processes, underlie the rapid evolution of this aggregative phenotype. Most mutated C. auris genes are associated with the regulation of cell wall integrity, cytokinesis, cytoskeletal properties, and cellular polarization. Moreover, the multicellular aggregates are notably more recalcitrant to the host antimicrobial peptides LL-37 and PACAP relative to the single-celled yeast-form cells. Overall, to survive in the host, C. auris can rapidly evolve a multicellular aggregative morphology via genetic mutations.


Asunto(s)
Candidiasis , Sepsis , Animales , Ratones , Candida/genética , Candidiasis/microbiología , Candida auris , Saccharomyces cerevisiae , Fenotipo , Antifúngicos , Pruebas de Sensibilidad Microbiana , Mamíferos
2.
Int J Antimicrob Agents ; 62(6): 107010, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863341

RESUMEN

OBJECTIVES: Infections caused by azole-resistant Candida tropicalis strains are increasing in clinical settings. The reason for this epidemical change and the mechanisms of C. tropicalis azole resistance are not fully understood. METHODS: In this study, we performed biological and genomic analyses of 239 C. tropicalis strains, including 115 environmental and 124 human commensal isolates. RESULTS: Most (99.2%) of the isolates had a baseline diploid genome. The strains from both environmental and human niches exhibit similar abilities to survive under stressful conditions and produce secreted aspartic proteases. However, the human commensal isolates exhibited a stronger ability to filament than the environmental strains. We found that 19 environmental isolates (16.5%) and 24 human commensal isolates (19.4%) were resistant to fluconazole. Of the fluconazole-resistant strains, 37 isolates (86.0%) also exhibited cross-resistance to voriconazole. Whole-genome sequencing and phylogenetic analyses revealed that both environmental and commensal isolates were widely distributed in a number of genetic clusters, but the two populations exhibited a close genetic association. The majority of fluconazole-resistant isolates were clustered within a single clade (X). CONCLUSIONS: The combination of hotspot mutations (Y132F and S154F) and genomic expansion of ERG11, which encodes the azole target lanosterol 14-α-demethylase and represents a major target of azole drugs, was a major mechanism for the development of azole resistance. The isolates carrying both hotspot mutations and genomic expansion of ERG11 exhibited cross-resistance to fluconazole and voriconazole. Moreover, the azole-resistant isolates from both the environmental and human commensal niches showed similar genotypes.


Asunto(s)
Azoles , Candida tropicalis , Farmacorresistencia Fúngica , Fluconazol , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Azoles/farmacología , Candida tropicalis/genética , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Genómica , Pruebas de Sensibilidad Microbiana , Mutación , Filogenia , Voriconazol/farmacología
3.
Sci China Life Sci ; 66(8): 1915-1929, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37118508

RESUMEN

Sexual reproduction is prevalent in eukaryotic organisms and plays a critical role in the evolution of new traits and in the generation of genetic diversity. Environmental factors often have a direct impact on the occurrence and frequency of sexual reproduction in fungi. The regulatory effects of atmospheric relative humidity (RH) on sexual reproduction and pathogenesis in plant fungal pathogens and in soil fungi have been extensively investigated. However, the knowledge of how RH regulates the lifecycles of human fungal pathogens is limited. In this study, we report that low atmospheric RH promotes the development of mating projections and same-sex (homothallic) mating in the human fungal pathogen Candida albicans. Low RH causes water loss in C. albicans cells, which results in osmotic stress and the generation of intracellular reactive oxygen species (ROS) and trehalose. The water transporting aquaporin Aqy1, and the G-protein coupled receptor Gpr1 function as cell surface sensors of changes in atmospheric humidity. Perturbation of the trehalose metabolic pathway by inactivating trehalose synthase or trehalase promotes same-sex mating in C. albicans by increasing osmotic or ROS stresses, respectively. Intracellular trehalose and ROS signal the Hog1-osmotic and Hsf1-Hsp90 signaling pathways to regulate the mating response. We, therefore, propose that the cell surface sensors Aqy1 and Gpr1, intracellular trehalose and ROS, and the Hog1-osmotic and Hsf1-Hsp90 signaling pathways function coordinately to regulate sexual mating in response to low atmospheric RH conditions in C. albicans.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Trehalosa/metabolismo , Humedad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Reproducción/fisiología
4.
PLoS Pathog ; 19(3): e1011239, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36913408

RESUMEN

Candida auris is an emerging multidrug-resistant fungal pathogen and a new global threat to human health. A unique morphological feature of this fungus is its multicellular aggregating phenotype, which has been thought to be associated with defects in cell division. In this study, we report a new aggregating form of two clinical C. auris isolates with increased biofilm forming capacity due to enhanced adherence of adjacent cells and surfaces. Unlike the previously reported aggregating morphology, this new aggregating multicellular form of C. auris can become unicellular after treatment with proteinase K or trypsin. Genomic analysis demonstrated that amplification of the subtelomeric adhesin gene ALS4 is the reason behind the strain's enhanced adherence and biofilm forming capacities. Many clinical isolates of C. auris have variable copy numbers of ALS4, suggesting that this subtelomeric region exhibits instability. Global transcriptional profiling and quantitative real-time PCR assays indicated that genomic amplification of ALS4 results in a dramatic increase in overall levels of transcription. Compared to the previously characterized nonaggregative/yeast-form and aggregative-form strains of C. auris, this new Als4-mediated aggregative-form strain of C. auris displays several unique characteristics in terms of its biofilm formation, surface colonization, and virulence.


Asunto(s)
Antifúngicos , Candida , Humanos , Candida/genética , Candida auris , Biopelículas , Genómica , Pruebas de Sensibilidad Microbiana
5.
Fungal Genet Biol ; 159: 103664, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35026387

RESUMEN

The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.


Asunto(s)
Candida albicans , Genes del Tipo Sexual de los Hongos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes del Tipo Sexual de los Hongos/genética , Feromonas/genética , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA