Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(4): e0181422, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36939341

RESUMEN

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Asunto(s)
Autofagia , Inmunidad Innata , Nucleoproteínas , Virus de la Fiebre del Valle del Rift , Inmunidad Innata/inmunología , Virus de la Fiebre del Valle del Rift/inmunología , Nucleoproteínas/inmunología , Nucleoproteínas/metabolismo , Autofagia/inmunología , Replicación Viral , Línea Celular , Fiebre del Valle del Rift/inmunología , Humanos , Animales , Macrófagos/virología
2.
mBio ; 14(2): e0328522, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36786573

RESUMEN

In the last 2 decades, pathogens originating in animals may have triggered three coronavirus pandemics, including the coronavirus disease 2019 pandemic. Thus, evaluation of the spillover risk of animal severe acute respiratory syndrome (SARS)-related coronavirus (SARSr-CoV) is important in the context of future disease preparedness. However, there is no analytical framework to assess the spillover risk of SARSr-CoVs, which cannot be determined by sequence analysis alone. Here, we established an integrity framework to evaluate the spillover risk of an animal SARSr-CoV by testing how viruses break through key human immune barriers, including viral cell tropism, replication dynamics, interferon signaling, inflammation, and adaptive immune barriers, using human ex vivo lung tissues, human airway and nasal organoids, and human lung cells. Using this framework, we showed that the two pre-emergent animal SARSr-CoVs, bat BtCoV-WIV1 and pangolin PCoV-GX, shared similar cell tropism but exhibited less replicative fitness in the human nasal cavity or airway than did SARS-CoV-2. Furthermore, these viruses triggered fewer proinflammatory responses and less cell death, yet showed interferon antagonist activity and the ability to partially escape adaptive immune barriers to SARS-CoV-2. Collectively, these animal viruses did not fully adapt to spread or cause severe diseases, thus causing successful zoonoses in humans. We believe that this experimental framework provides a path to identifying animal coronaviruses with the potential to cause future zoonoses. IMPORTANCE Evaluation of the zoonotic risk of animal SARSr-CoVs is important for future disease preparedness. However, there are misconceptions regarding the risk of animal viruses. For example, an animal SARSr-CoV could readily infect humans. Alternately, human receptor usage may result in spillover risk. Here, we established an analytical framework to assess the zoonotic risk of SARSr-CoV by testing a series of virus-host interaction profiles. Our data showed that the pre-emergent bat BtCoV-WIV1 and pangolin PCoV-GX were less adapted to humans than SARS-CoV-2 was, suggesting that it may be extremely rare for animal SARSr-CoVs to break all bottlenecks and cause successful zoonoses.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , Pangolines , SARS-CoV-2 , Zoonosis , Interferones , Filogenia
3.
Cell Res ; 33(3): 201-214, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36650286

RESUMEN

SARS-CoV-2 infection can trigger strong inflammatory responses and cause severe lung damage in COVID-19 patients with critical illness. However, the molecular mechanisms by which the infection induces excessive inflammatory responses are not fully understood. Here, we report that SARS-CoV-2 infection results in the formation of viral Z-RNA in the cytoplasm of infected cells and thereby activates the ZBP1-RIPK3 pathway. Pharmacological inhibition of RIPK3 by GSK872 or genetic deletion of MLKL reduced SARS-CoV-2-induced IL-1ß release. ZBP1 or RIPK3 deficiency leads to reduced production of both inflammatory cytokines and chemokines during SARS-CoV-2 infection both in vitro and in vivo. Furthermore, deletion of ZBP1 or RIPK3 alleviated SARS-CoV-2 infection-induced immune cell infiltration and lung damage in infected mouse models. These results suggest that the ZBP1-RIPK3 pathway plays a critical role in SARS-CoV-2-induced inflammatory responses and lung damage. Our study provides novel insights into how SARS-CoV-2 infection triggers inflammatory responses and lung pathology, and implicates the therapeutic potential of targeting ZBP1-RIPK3 axis in treating COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/metabolismo , COVID-19/patología , ARN , Pulmón/patología , Citocinas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
4.
Signal Transduct Target Ther ; 7(1): 83, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277473

RESUMEN

SARS-CoV-2 induced marked lymphopenia in severe patients with COVID-19. However, whether lymphocytes are targets of viral infection is yet to be determined, although SARS-CoV-2 RNA or antigen has been identified in T cells from patients. Here, we confirmed that SARS-CoV-2 viral antigen could be detected in patient peripheral blood cells (PBCs) or postmortem lung T cells, and the infectious virus could also be detected from viral antigen-positive PBCs. We next prove that SARS-CoV-2 infects T lymphocytes, preferably activated CD4 + T cells in vitro. Upon infection, viral RNA, subgenomic RNA, viral protein or viral particle can be detected in the T cells. Furthermore, we show that the infection is spike-ACE2/TMPRSS2-independent through using ACE2 knockdown or receptor blocking experiments. Next, we demonstrate that viral antigen-positive T cells from patient undergone pronounced apoptosis. In vitro infection of T cells induced cell death that is likely in mitochondria ROS-HIF-1a-dependent pathways. Finally, we demonstrated that LFA-1, the protein exclusively expresses in multiple leukocytes, is more likely the entry molecule that mediated SARS-CoV-2 infection in T cells, compared to a list of other known receptors. Collectively, this work confirmed a SARS-CoV-2 infection of T cells, in a spike-ACE2-independent manner, which shed novel insights into the underlying mechanisms of SARS-CoV-2-induced lymphopenia in COVID-19 patients.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Linfocitos T/metabolismo , Animales , Células CACO-2 , Chlorocebus aethiops , Humanos , Células Vero
5.
Signal Transduct Target Ther ; 5(1): 235, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037188

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.


Asunto(s)
Apoptosis/inmunología , Betacoronavirus/patogenicidad , Caspasa 8/inmunología , Infecciones por Coronavirus/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Necroptosis/inmunología , Neumonía Viral/inmunología , Fibrosis Pulmonar/inmunología , Animales , COVID-19 , Caspasa 8/genética , Línea Celular Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/inmunología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Síndrome de Liberación de Citoquinas/genética , Síndrome de Liberación de Citoquinas/patología , Síndrome de Liberación de Citoquinas/virología , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/patología , Células Epiteliales/virología , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-7/genética , Interleucina-7/inmunología , Interleucina-8/genética , Interleucina-8/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Transgénicos , Pandemias , Neumonía Viral/genética , Neumonía Viral/patología , Neumonía Viral/virología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/virología , SARS-CoV-2 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
6.
Cell Rep ; 30(13): 4370-4385.e7, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234474

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne virus that carries a high fatality rate of 12%-50%. In-depth understanding of the SFTSV-induced pathogenesis mechanism is critical for developing effective anti-SFTS therapeutics. Here, we report transcriptomic analysis of blood samples from SFTS patients. We observe a strong correlation between inflammatory responses and disease progression and fatal outcome. Quantitative proteomic analysis of SFTSV infection confirms the induction of inflammation and further reveals virus-induced mitochondrial dysfunction. Mechanistically, SFTSV infection triggers BCL2 antagonist/killer 1 (BAK) upregulation and BAK/BCL2-associated X (BAX) activation, leading to mitochondrial DNA (mtDNA) oxidization and subsequent cytosolic release. The cytosolic mtDNA binds and triggers NLRP3 inflammasome activation. Notably, the BAK expression level correlates with SFTS disease progression and fatal outcome. These findings provide insights into the clinical features and molecular underpinnings of severe SFTS, which may aid in patient care and therapeutic design, and may also be conserved during infection by other highly pathogenic viruses.


Asunto(s)
Infecciones por Bunyaviridae/metabolismo , ADN Mitocondrial/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Phlebovirus/fisiología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Adulto , Animales , Infecciones por Bunyaviridae/genética , Infecciones por Bunyaviridae/virología , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Inflamación/genética , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Biológicos , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptor Toll-Like 8/metabolismo , Transcriptoma/genética
7.
Viruses ; 11(9)2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31500343

RESUMEN

Rift Valley fever virus (RVFV) is a mosquito-borne phlebovirus that represents as a serious health threat to both domestic animals and humans. The viral protein NSs is the key virulence factor of RVFV, and has been proposed that NSs nuclear filament formation is critical for its virulence. However, the detailed mechanisms are currently unclear. Here, we generated a T7 RNA polymerase-driven RVFV reverse genetics system based on a strain imported into China (BJ01). Several NSs mutations (T1, T3 and T4) were introduced into the system for investigating the correlation between NSs filament formation and virulence in vivo. The NSs T1 mutant showed distinct NSs filament in the nuclei of infected cells, the T3 mutant diffusively localized in the cytoplasm and the T4 mutant showed fragmented nuclear filament formation. Infection of BALB/c mice with these NSs mutant viruses revealed that the in vivo virulence was severely compromised for all three NSs mutants, including the T1 mutant. This suggests that NSs filament formation is not directly correlated with RVFV virulence in vivo. Results from this study not only shed new light on the virulence mechanism of RVFV NSs but also provided tools for future in-depth investigations of RVFV pathogenesis and anti-RVFV drug screening.


Asunto(s)
Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/metabolismo , Virus de la Fiebre del Valle del Rift/patogenicidad , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Núcleo Celular/virología , Humanos , Ratones Endogámicos BALB C , Mutación , Virus de la Fiebre del Valle del Rift/química , Virus de la Fiebre del Valle del Rift/genética , Proteínas no Estructurales Virales/genética , Virulencia
8.
Virology ; 535: 200-209, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31319277

RESUMEN

Hsp90, a highly conserved cellular molecular chaperone, is involved in the life cycle of many viruses. A recent proteomics study revealed that Hsp90 was incorporated into the budded virions (BVs) of baculovirus, we therefore explored the role of Hsp90 during Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection process. The results showed that Hsp90 was essential for AcMNPV BV propagation in cultured cells. Electron microscopy detected that nucleocapsids failed to egress from the nucleus to the cytoplasm for further BV budding. Inactivation of Hsp90 abolished virus-triggered nuclear actin polymerization, a process providing essential driving forces for nucleocapsid egress. Further analyses suggested that this was due to the selectively regulation of the proper protein levels and nuclear accumulation of P40 subunit of host actin related protein 2/3 complex (Arp2/3). Thus, Hsp90 participates in baculovirus BV propagation by facilitating nuclear actin polymerization required for progeny BV production.


Asunto(s)
Actinas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Interacciones Microbiota-Huesped , Proteínas Nucleares/metabolismo , Nucleopoliedrovirus/crecimiento & desarrollo , Polimerizacion , Ensamble de Virus , Animales , Microscopía Electrónica de Transmisión , Células Sf9 , Spodoptera , Virión/ultraestructura , Liberación del Virus
9.
Avian Pathol ; 46(3): 265-271, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27866413

RESUMEN

Dietary selenium (Se) deficiency may influence the calcium (Ca) homeostasis in broilers. Our objective was to investigate the effects of Se deficiency on Ca regulation-related genes in broiler hearts. In the present study, 1-day-old broilers were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 35 days. We examined the mRNA expression levels of 15 Ca regulation-related genes (ITPR 1, ITPR 2, ITPR3, RyR2, RyR3, SERCA1s, SLC8A1, PMCA1, CACNA1S, TRPC1, TRPC3, stromal interacting molecule 1, ORAI1, calmodulin (CaLM) and calreticulin (CRT) in broiler hearts. Then, Kyoto Encyclopedia of Genes and Genomes analysis, protein-protein interactions (PPI) analysis and correlation analysis were performed to analyse the relationships between these genes. The results showed that the mRNA expression levels of ITPR 1, ITPR 2, RyR2, RyR3, SERCA1s, SLC8A1, PMCA1, CACNA1S, CaLM and CRT were generally decreased by Se deficiency, while mRNA expression levels of TRPC1, TRPC3, stromal interacting molecule 1, ORAI1 and ITPR3 were increased by Se deficiency. Kyoto Encyclopedia of Genes and Genomes and PPI analysis showed that these Ca regulation-related genes are involved in the Ca signalling pathway and a total of 15 PPIs with a combined score of >0.4 were obtained. In conclusion, the results demonstrated that Se deficiency might cause heart injury via modulating the Ca-related pathway genes, and then induce Ca2+ overload in the heart of broilers.


Asunto(s)
Calcio/metabolismo , Pollos/metabolismo , Selenio/deficiencia , Animales , Pollos/genética , Dieta/veterinaria , Suplementos Dietéticos , Regulación de la Expresión Génica , Homeostasis , Miocardio/metabolismo , Estrés Oxidativo , Selenio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA