Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 51(48): 9706-17, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23148532

RESUMEN

MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic ß-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA-DNA complex. MafA forms base-specific hydrogen bonds with the flanking G(-5)C(-4) and central C(0)/G(0) bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse-chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.


Asunto(s)
ADN/metabolismo , Leucina Zippers , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Factores de Transcripción Maf de Gran Tamaño/química , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
2.
Biochemistry ; 47(1): 218-29, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18069799

RESUMEN

The ubiquitous class I basic helix-loop-helix (bHLH) factor E47 forms heterodimers with multiple tissue specific class II bHLH proteins to regulate distinct differentiation pathways. In order to define how class I- class II heterodimer partners are selected, we determined the crystal structure of the E47-NeuroD1-bHLH dimer in complex with the insulin promoter E-box sequence. Purification of the bHLH domain of E47-NeuroD1 indicates that E47 heterodimers are stable in solution. The interactions between E47 and NeuroD1 in the heterodimer are comparable to the interactions between E47 monomers in the homodimer, including hydrogen bonding, buried hydrophobic surface, and packing interactions. This is consistent with a model in which E47-NeuroD1 heterodimers are favored due to the instability of NeuroD1 homodimers. Although E47-NeuroD1 is oriented uniquely on the E-box sequence (CATCTG) within the promoter of the insulin gene, no direct contacts are observed with the central base pairs within this E-box sequence. We propose that concerted domain motions allow E47 to form specific base contacts in solution. NeuroD1 is restrained from adopting the same base contacts by an additional phosphate backbone interaction by the neurogenic-specific residue His115. Orienting E47-NeuroD1 on promoters may foster protein-protein contacts essential to initiate transcription.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción TCF/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/genética , Dimerización , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Factores de Transcripción TCF/química , Proteína 1 Similar al Factor de Transcripción 7
3.
Biochemistry ; 46(11): 2948-57, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17315980

RESUMEN

Pancreatic and duodenal homeobox 1 (Pdx1) is a homeodomain transcription factor belonging to the ParaHox family. Pdx1 plays an essential role in pancreatic endocrine and exocrine cell development and maintenance of adult islet beta-cell function. Mutations in the human pdx1 gene are linked to an early onset form of non-insulin-dependent diabetes mellitus, MODY-4. We demonstrate that the homeodomain reproduces the binding specificity of the full-length protein. We report the 2.4 A resolution crystal structure of the homeodomain bound to a target DNA. The two Pdx1/DNA complexes in the asymmetric unit display conformational differences: in the DNA curvature, the orientation of the homeodomain in the major groove, and the order of the N-terminal arm. Comparing the two complexes indicates invariant protein-DNA contacts, and variant contacts that are unique to each binding orientation. An induced fit model is proposed that depends on the DNA conformation and provides a mechanism for nonlocal contributions to binding specificity.


Asunto(s)
ADN/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cricetinae , Cristalización , Cristalografía por Rayos X , Mesocricetus , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Alineación de Secuencia
4.
Mol Microbiol ; 51(3): 887-901, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14731287

RESUMEN

Two-component regulatory systems, typically composed of a sensor kinase to detect a stimulus and a response regulator to execute a response, are widely used by microorganisms for signal transduction. Response regulators exhibit a high degree of structural similarity and undergo analogous activating conformational changes upon phosphorylation. The activity of particular response regulators can be increased by specific amino acid substitutions, which either prolong the lifetime or mimic key features of the phosphorylated state. We probed the universality of response regulator activation by amino acid substitution. Thirty-six mutations that activate 11 different response regulators were identified from the literature. To determine whether the activated phenotypes would be retained in the context of a different response regulator, we recreated 51 analogous amino acid substitutions at corresponding positions of CheY. About 55% of the tested substitutions completely or partially inactivated CheY, approximately 30% were phenotypically silent, and approximately 15% activated CheY. Three previously uncharacterized activated CheY mutants were found. The 94NS (and presumably 94NT) substitutions resulted in resistance to CheZ-mediated dephosphorylation. The 113AP substitution led to enhanced autophosphorylation and may increase the fraction of non-phosphorylated CheY molecules that populate the activated conformation. The locations of activating substitutions on the response regulator three-dimensional structure are generally consistent with current understanding of the activation mechanism. The best candidates for potentially universal activating substitutions of response regulators identified in this study were 13DK and 113AP.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Bacterianas/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/genética , Fenotipo , Fosforilación , Unión Proteica
5.
J Bacteriol ; 185(21): 6385-91, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14563873

RESUMEN

In a two-component regulatory system, an important means of signal transduction in microorganisms, a sensor kinase phosphorylates a response regulator protein on an aspartyl residue, resulting in activation. The active site of the response regulator is highly charged (containing a lysine, the phosphorylatable aspartate, two additional aspartates involved in metal binding, and an Mg(2+) ion), and introduction of the dianionic phosphoryl group results in the repositioning of charged moieties. Furthermore, substitution of one of the Mg(2+)-coordinating aspartates with lysine or arginine in the Escherichia coli chemotaxis response regulator CheY results in phosphorylation-independent activation. In order to examine the consequences of altered charge distribution for response regulator activity and to identify possible additional amino acid substitutions that result in phosphorylation-independent activation, we made 61 CheY mutants in which residues close to the site of phosphorylation (Asp57) were replaced by various charged amino acids. Most substitutions (47 of 61) resulted in the complete loss of CheY activity, as measured by the inability to support clockwise flagellar rotation. However, 10 substitutions, all introducing a new positive charge, resulted in the loss of chemotaxis but in the retention of some clockwise flagellar rotation. Of the mutants in this set, only the previously identified CheY13DK and CheY13DR mutants displayed clockwise activity in the absence of the CheA sensor kinase. The absence of negatively charged substitution mutants with residual activity suggests that the introduction of additional negative charges into the active site is particularly deleterious for CheY function. Finally, the spatial distribution of positions at which amino acid substitutions are functionally tolerated or not tolerated is consistent with the presently accepted mechanism of response regulator activation and further suggests a possible role for Met17 in signal transduction by CheY.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Escherichia coli , Flagelos/metabolismo , Histidina Quinasa , Magnesio , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Mutación , Estructura Terciaria de Proteína , Electricidad Estática
6.
J Bacteriol ; 185(5): 1495-502, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12591865

RESUMEN

The swimming behavior of Escherichia coli at any moment is dictated by the intracellular concentration of the phosphorylated form of the chemotaxis response regulator CheY, which binds to the base of the flagellar motor. CheY is phosphorylated on Asp57 by the sensor kinase CheA and dephosphorylated by CheZ. Previous work (Silversmith et al., J. Biol. Chem. 276:18478, 2001) demonstrated that replacement of CheY Asn59 with arginine resulted in extreme resistance to dephosphorylation by CheZ despite proficient binding to CheZ. Here we present the X-ray crystal structure of CheYN59R in a complex with Mn(2+) and the stable phosphoryl analogue BeF(3)(-). The overall folding and active site architecture are nearly identical to those of the analogous complex containing wild-type CheY. The notable exception is the introduction of a salt bridge between Arg59 (on the beta3alpha3 loop) and Glu89 (on the beta4alpha4 loop). Modeling this structure into the (CheY-BeF(3)(-)-Mg(2+))(2)CheZ(2) structure demonstrated that the conformation of Arg59 should not obstruct entry of the CheZ catalytic residue Gln147 into the active site of CheY, eliminating steric interference as a mechanism for CheZ resistance. However, both CheYE89A and CheYE89Q, like CheYN59R, conferred clockwise flagellar rotation phenotypes in strains which lacked wild-type CheY and displayed considerable (approximately 40-fold) resistance to dephosphorylation by CheZ. CheYE89A and CheYE89Q had autophosphorylation and autodephosphorylation properties similar to those of wild-type CheY and could bind to CheZ with wild-type affinity. Therefore, removal of Glu89 resulted specifically in CheZ resistance, suggesting that CheY Glu89 plays a role in CheZ-mediated dephosphorylation. The CheZ resistance of CheYN59R can thus be largely explained by the formation of the salt bridge between Arg59 and Glu89, which prevents Glu89 from executing its role in catalysis.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis/fisiología , Escherichia coli/fisiología , Ácido Glutámico/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Arginina/química , Cristalografía por Rayos X , Proteínas de Escherichia coli/fisiología , Ácido Glutámico/química , Ácido Glutámico/genética , Histidina Quinasa , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Moleculares , Fosforilación , Mutación Puntual , Conformación Proteica , Sales (Química)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...