Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis ; 24(5): 6, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727688

RESUMEN

Prior research has demonstrated high levels of color constancy in real-world scenarios featuring single light sources, extensive fields of view, and prolonged adaptation periods. However, exploring the specific cues humans rely on becomes challenging, if not unfeasible, with actual objects and lighting conditions. To circumvent these obstacles, we employed virtual reality technology to craft immersive, realistic settings that can be manipulated in real time. We designed forest and office scenes illuminated by five colors. Participants selected a test object most resembling a previously shown achromatic reference. To study color constancy mechanisms, we modified scenes to neutralize three contributors: local surround (placing a uniform-colored leaf under test objects), maximum flux (keeping the brightest object constant), and spatial mean (maintaining a neutral average light reflectance), employing two methods for the latter: changing object reflectances or introducing new elements. We found that color constancy was high in conditions with all cues present, aligning with past research. However, removing individual cues led to varied impacts on constancy. Local surrounds significantly reduced performance, especially under green illumination, showing strong interaction between greenish light and rose-colored contexts. In contrast, the maximum flux mechanism barely affected performance, challenging assumptions used in white balancing algorithms. The spatial mean experiment showed disparate effects: Adding objects slightly impacted performance, while changing reflectances nearly eliminated constancy, suggesting human color constancy relies more on scene interpretation than pixel-based calculations.


Asunto(s)
Percepción de Color , Señales (Psicología) , Iluminación , Estimulación Luminosa , Realidad Virtual , Humanos , Percepción de Color/fisiología , Iluminación/métodos , Adulto , Masculino , Femenino , Estimulación Luminosa/métodos , Adulto Joven
2.
SN Comput Sci ; 3(1): 22, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34778840

RESUMEN

Virtual reality (VR) technology offers vision researchers the opportunity to conduct immersive studies in simulated real-world scenes. However, an accurate colour calibration of the VR head mounted display (HMD), both in terms of luminance and chromaticity, is required to precisely control the presented stimuli. Such a calibration presents significant new challenges, for example, due to the large field of view of the HMD, or the software implementation used for scene rendering, which might alter the colour appearance of objects. Here, we propose a framework for calibrating an HMD using an imaging colorimeter, the I29 (Radiant Vision Systems, Redmond, WA, USA). We examine two scenarios, both with and without using a rendering software for visualisation. In addition, we present a colour constancy experiment design for VR through a gaming engine software, Unreal Engine 4. The colours of the objects of study are chosen according to the previously defined calibration. Results show a high-colour constancy performance among participants, in agreement with recent studies performed on real-world scenarios. Our studies show that our methodology allows us to control and measure the colours presented in the HMD, effectively enabling the use of VR technology for colour vision research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...