Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 4205, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273209

RESUMEN

Astrocytes play a central role in the neuroimmune response by responding to CNS pathologies with diverse molecular and morphological changes during the process of reactive astrogliosis. Here, we used a computational biological network model and mathematical algorithms that allow the interpretation of high-throughput transcriptomic datasets in the context of known biology to study reactive astrogliosis. We gathered available mechanistic information from the literature into a comprehensive causal biological network (CBN) model of astrocyte reactivity. The CBN model was built in the Biological Expression Language, which is both human-readable and computable. We characterized the CBN with a network analysis of highly connected nodes and demonstrated that the CBN captures relevant astrocyte biology. Subsequently, we used the CBN and transcriptomic data to identify key molecular pathways driving the astrocyte phenotype in four CNS pathologies: samples from mouse models of lipopolysaccharide-induced endotoxemia, Alzheimer's disease, and amyotrophic lateral sclerosis; and samples from multiple sclerosis patients. The astrocyte CBN provides a new tool to identify causal mechanisms and quantify astrogliosis based on transcriptomic data.


Asunto(s)
Gliosis , Enfermedades Neuroinflamatorias , Animales , Astrocitos/metabolismo , Gliosis/patología , Humanos , Inflamación/patología , Ratones , Análisis de Sistemas
2.
Front Genet ; 12: 652632, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211495

RESUMEN

Adverse outcomes that result from chemical toxicity are rarely caused by dysregulation of individual proteins; rather, they are often caused by system-level perturbations in networks of molecular events. To fully understand the mechanisms of toxicity, it is necessary to recognize the interactions of molecules, pathways, and biological processes within these networks. The developing brain is a prime example of an extremely complex network, which makes developmental neurotoxicity one of the most challenging areas in toxicology. We have developed a systems toxicology method that uses a computable biological network to represent molecular interactions in the developing brain of zebrafish larvae. The network is curated from scientific literature and describes interactions between biological processes, signaling pathways, and adverse outcomes associated with neurotoxicity. This allows us to identify important signaling hubs, pathway interactions, and emergent adverse outcomes, providing a more complete understanding of neurotoxicity. Here, we describe the construction of a zebrafish developmental neurotoxicity network and its validation by integration with publicly available neurotoxicity-related transcriptomic datasets. Our network analysis identified consistent regulation of tumor suppressors p53 and retinoblastoma 1 (Rb1) as well as the oncogene Krüppel-like factor (Klf8) in response to chemically induced developmental neurotoxicity. The developed network can be used to interpret transcriptomic data in a neurotoxicological context.

3.
Sci Rep ; 11(1): 11519, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075172

RESUMEN

The molecular mechanisms of IBD have been the subject of intensive exploration. We, therefore, assembled the available information into a suite of causal biological network models, which offer comprehensive visualization of the processes underlying IBD. Scientific text was curated by using Biological Expression Language (BEL) and compiled with OpenBEL 3.0.0. Network properties were analysed by Cytoscape. Network perturbation amplitudes were computed to score the network models with transcriptomic data from public data repositories. The IBD network model suite consists of three independent models that represent signalling pathways that contribute to IBD. In the "intestinal permeability" model, programmed cell death factors were downregulated in CD and upregulated in UC. In the "inflammation" model, PPARG, IL6, and IFN-associated pathways were prominent regulatory factors in both diseases. In the "wound healing" model, factors promoting wound healing were upregulated in CD and downregulated in UC. Scoring of publicly available transcriptomic datasets onto these network models demonstrated that the IBD models capture the perturbation in each dataset accurately. The IBD network model suite can provide better mechanistic insights of the transcriptional changes in IBD and constitutes a valuable tool in personalized medicine to further understand individual drug responses in IBD.


Asunto(s)
Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Mucosa Intestinal/inmunología , Modelos Inmunológicos , Biología de Sistemas , Transcriptoma/inmunología , Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Humanos , Mucosa Intestinal/patología
4.
Comput Struct Biotechnol J ; 18: 1056-1073, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32419906

RESUMEN

Cigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases. Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE-/- mice, we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2-a potential and a candidate MRTP based on the heat-not-burn (HnB) principle-compared with CS at matched nicotine concentrations. Molecular exposure effects in the lungs were measured by mRNA/microRNA transcriptomics, proteomics, metabolomics, and lipidomics. Integrative data analysis included Multi-Omics Factor Analysis and multi-modality functional network interpretation. Across all five data modalities, CS exposure was associated with an increased inflammatory and oxidative stress response, and lipid/surfactant alterations. Upon HnB aerosol exposure these effects were much more limited or absent, with reversal of CS-induced effects upon cessation and switching to CHTP 1.2. Functional network analysis revealed CS-induced complex immunoregulatory interactions across the investigated molecular layers (e.g., itaconate, quinolinate, and miR-146) and highlighted the engagement of the heme-Hmox-bilirubin oxidative stress axis by CS. This work exemplifies how multi-omics approaches can be leveraged within systems toxicology studies and the generated multi-omics data set can facilitate the development of analysis methods and can yield further insights into the effects of toxicological exposures on the lung of mice.

5.
BMC Bioinformatics ; 20(1): 451, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481014

RESUMEN

BACKGROUND: High-throughput gene expression technologies provide complex datasets reflecting mechanisms perturbed in an experiment, typically in a treatment versus control design. Analysis of these information-rich data can be guided based on a priori knowledge, such as networks of related proteins or genes. Assessing the response of a specific mechanism and investigating its biological basis is extremely important in systems toxicology; as compounds or treatment need to be assessed with respect to a predefined set of key mechanisms that could lead to toxicity. Two-layer networks are suitable for this task, and a robust computational methodology specifically addressing those needs was previously published. The NPA package ( https://github.com/philipmorrisintl/NPA ) implements the algorithm, and a data package of eight two-layer networks representing key mechanisms, such as xenobiotic metabolism, apoptosis, or epithelial immune innate activation, is provided. RESULTS: Gene expression data from an animal study are analyzed using the package and its network models. The functionalities are implemented using R6 classes, making the use of the package seamless and intuitive. The various network responses are analyzed using the leading node analysis, and an overall perturbation, called the Biological Impact Factor, is computed. CONCLUSIONS: The NPA package implements the published network perturbation amplitude methodology and provides a set of two-layer networks encoded in the Biological Expression Language.


Asunto(s)
Metodologías Computacionales , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Programas Informáticos , Algoritmos , Animales , Apoptosis/genética , Ciclo Celular/genética , Bases de Datos Genéticas , Matriz Extracelular/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo , Transcriptoma/genética
6.
Front Genet ; 10: 87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828347

RESUMEN

Mucociliary clearance (MCC), considered as a collaboration of mucus secreted from goblet cells, the airway surface liquid layer, and the beating of cilia of ciliated cells, is the airways' defense system against airborne contaminants. Because the process is well described at the molecular level, we gathered the available information into a suite of comprehensive causal biological network (CBN) models. The suite consists of three independent models that represent (1) cilium assembly, (2) ciliary beating, and (3) goblet cell hyperplasia/metaplasia and that were built in the Biological Expression Language, which is both human-readable and computable. The network analysis of highly connected nodes and pathways demonstrated that the relevant biology was captured in the MCC models. We also show the scoring of transcriptomic data onto these network models and demonstrate that the models capture the perturbation in each dataset accurately. This work is a continuation of our approach to use computational biological network models and mathematical algorithms that allow for the interpretation of high-throughput molecular datasets in the context of known biology. The MCC network model suite can be a valuable tool in personalized medicine to further understand heterogeneity and individual drug responses in complex respiratory diseases.

7.
BMC Res Notes ; 7: 302, 2014 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-24886675

RESUMEN

BACKGROUND: High-quality expression data are required to investigate the biological effects of microRNAs (miRNAs). The goal of this study was, first, to assess the quality of miRNA expression data based on microarray technologies and, second, to consolidate it by applying a novel normalization method. Indeed, because of significant differences in platform designs, miRNA raw data cannot be normalized blindly with standard methods developed for gene expression. This fundamental observation motivated the development of a novel multi-array normalization method based on controllable assumptions, which uses the spike-in control probes to adjust the measured intensities across arrays. RESULTS: Raw expression data were obtained with the Exiqon dual-channel miRCURY LNA™ platform in the "common reference design" and processed as "pseudo-single-channel". They were used to apply several quality metrics based on the coefficient of variation and to test the novel spike-in controls based normalization method. Most of the considerations presented here could be applied to raw data obtained with other platforms. To assess the normalization method, it was compared with 13 other available approaches from both data quality and biological outcome perspectives. The results showed that the novel multi-array normalization method reduced the data variability in the most consistent way. Further, the reliability of the obtained differential expression values was confirmed based on a quantitative reverse transcription-polymerase chain reaction experiment performed for a subset of miRNAs. The results reported here support the applicability of the novel normalization method, in particular to datasets that display global decreases in miRNA expression similarly to the cigarette smoke-exposed mouse lung dataset considered in this study. CONCLUSIONS: Quality metrics to assess between-array variability were used to confirm that the novel spike-in controls based normalization method provided high-quality miRNA expression data suitable for reliable downstream analysis. The multi-array miRNA raw data normalization method was implemented in an R software package called ExiMiR and deposited in the Bioconductor repository.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Algoritmos , Animales , Exposición por Inhalación , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones Endogámicos , Material Particulado/farmacología , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Humo , Nicotiana/química
8.
BMC Genomics ; 14: 514, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23895370

RESUMEN

BACKGROUND: High-throughput omics technologies such as microarrays and next-generation sequencing (NGS) have become indispensable tools in biological research. Computational analysis and biological interpretation of omics data can pose significant challenges due to a number of factors, in particular the systems integration required to fully exploit and compare data from different studies and/or technology platforms. In transcriptomics, the identification of differentially expressed genes when studying effect(s) or contrast(s) of interest constitutes the starting point for further downstream computational analysis (e.g. gene over-representation/enrichment analysis, reverse engineering) leading to mechanistic insights. Therefore, it is important to systematically store the full list of genes with their associated statistical analysis results (differential expression, t-statistics, p-value) corresponding to one or more effect(s) or contrast(s) of interest (shortly termed as " contrast data") in a comparable manner and extract gene sets in order to efficiently support downstream analyses and further leverage data on a long-term basis. Filling this gap would open new research perspectives for biologists to discover disease-related biomarkers and to support the understanding of molecular mechanisms underlying specific biological perturbation effects (e.g. disease, genetic, environmental, etc.). RESULTS: To address these challenges, we developed Confero, a contrast data and gene set platform for downstream analysis and biological interpretation of omics data. The Confero software platform provides storage of contrast data in a simple and standard format, data transformation to enable cross-study and platform data comparison, and automatic extraction and storage of gene sets to build new a priori knowledge which is leveraged by integrated and extensible downstream computational analysis tools. Gene Set Enrichment Analysis (GSEA) and Over-Representation Analysis (ORA) are currently integrated as an analysis module as well as additional tools to support biological interpretation. Confero is a standalone system that also integrates with Galaxy, an open-source workflow management and data integration system. To illustrate Confero platform functionality we walk through major aspects of the Confero workflow and results using the Bioconductor estrogen package dataset. CONCLUSION: Confero provides a unique and flexible platform to support downstream computational analysis facilitating biological interpretation. The system has been designed in order to provide the researcher with a simple, innovative, and extensible solution to store and exploit analyzed data in a sustainable and reproducible manner thereby accelerating knowledge-driven research. Confero source code is freely available from http://sourceforge.net/projects/confero/.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Programas Informáticos , Animales , Interpretación Estadística de Datos , Sistemas de Administración de Bases de Datos , Estrógenos/metabolismo , Humanos , Almacenamiento y Recuperación de la Información , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA