Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 234(6): 9399-9407, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30362585

RESUMEN

Several studies have shown the role of microRNAs (miRNAs) in myocardial dysfunction in response to ischemia/reperfusion (I/R). In this study, we investigated the impact of high fat (HF) diet in the myocardial susceptibility to I/R injury, as well as in the expression of miRNA-29b. Isolated heart experiments using the ex vivo Langendorff perfusion model were used to induce cardiac I/R injury. HF diet-induced cardiac hypertrophy and impaired cardiac functional recovery after I/R. miRNA-29b, which targets Col1, was reduced in the heart of HF diet-fed mice, whereas the cardiac expression of Col1 was increased. In addition, hypoxia-reoxygenation (H/R) reduced the expression of miRNA-29b in cardiomyoblasts cultures. However, the overexpression of miRNA-29b in cardiomyoblasts reduced p53 mRNA levels and H/R injury, suggesting that downregulation of miRNA-29b may be involved in I/R injury. Together, our findings suggest that the reduced expression of miRNA-29b may be involved in the deteriorated cardiac functional recovery following I/R in obese mice.


Asunto(s)
Dieta Alta en Grasa , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Animales , Peso Corporal , Línea Celular , Colágeno/genética , Colágeno/metabolismo , Dislipidemias/complicaciones , Dislipidemias/patología , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/patología , Pruebas de Función Cardíaca , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/patología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología
2.
J Cell Physiol ; 231(8): 1771-83, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26638879

RESUMEN

Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3ß and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Cardiomegalia/genética , Dieta Alta en Grasa , Perfilación de la Expresión Génica , MicroARNs/genética , Miocitos Cardíacos , Remodelación Ventricular/genética , Animales , Animales Recién Nacidos , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Células Cultivadas , Biología Computacional , Dieta con Restricción de Grasas , Modelos Animales de Enfermedad , Dislipidemias/genética , Dislipidemias/metabolismo , Fibrosis , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Insulina/genética , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Wistar , Transducción de Señal/genética , Factores de Tiempo
3.
Basic Res Cardiol ; 110(5): 49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26202011

RESUMEN

Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , MicroARNs/biosíntesis , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hipertiroidismo/complicaciones , Masculino , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Hormonas Tiroideas/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...