Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(6)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37376054

RESUMEN

In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via µ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.

2.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35890776

RESUMEN

The main objective of this work is the characterization and observation of the performance of an IoT measurement and monitoring system in the field of cultural heritage conservation for assessing the health condition of artworks. This article also describes the application of this system to the monitoring of a canvas painting applied on a wooden support, an artwork from the 19th century by the painter Giuseppe Patricolo depicting The Deposition, placed inside a niche in the Santa Caterina Monastery in Palermo (Italy). Considering the presence of the wooden structure, it is useful to measure not only microclimatic parameters such as temperature and humidity, but also vibrations that can in fact cause degradation phenomena in these artworks. This is a first step towards the development of mimetic systems integrated in the work of art without causing physical, mechanical or chemical alterations and ensuring that the level of microclimatic parameters is below the threshold values whose exceeding could compromise the entire artefact.


Asunto(s)
Monitoreo del Ambiente , Microclima , Humedad , Temperatura , Vibración
3.
J Radiosurg SBRT ; 8(1): 37-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387411

RESUMEN

The aim of this work is to verify the potential use of GAFchromicTM EBT3 and FILMQATM pro software for patient specific quality assurance (QA) for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) treatment plans in clinical routine use. In particular, encephalic, pulmonary and lymph node treatments plans were selected for this study. The agreement between the calculated and measured dose distributions were evaluated in terms of ɣ index with 3%3mm, 2%2mm, 1.5%1.5mm and 3%1.5mm criteria. The obtained results were then compared to the routine pre-treatment verification method which uses electronic portal imaging device (EPID) and EPIQA analysis software. EBT3-FilmQA method results show a mean ɣ index passing rate >95% with 2%1.5mm analysis criteria and an improvement of about 7% compared with EPID-EPIQA method results.

4.
Surg Laparosc Endosc Percutan Tech ; 29(5): e79-e83, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31453911

RESUMEN

Ultrasonic devices disperse less energy in the tissues. The new Harmonic Focus+ (HF+) seems to be more efficient but thermal damages have been reported. This study examined the temperature and the emissivity profile of the active and passive blades of the HF+, on a pig tissue model at different power settings. The FLIR System B series thermal imaging camera has been used on various biological pig tissues to evaluate the emissivity of the ultrasonic device. The active blade heats up faster than the passive one and the increase in power increases the speed of the temperature raising only on the active blade. Increasing the power setting reduces the dissection time and the temperature of both blades. Active blade temperatures of <60°C are obtained with cutting times close to 5 seconds; with these cutting times, the inactive blade does not exceed 30°C. The HF+ emissivity profiles demonstrate that the behavior of the inactive blade is significantly different from the active one. To prevent thermal damages, keep the active blade toward the operator, do not exceed 5 seconds of activation, use the maximum power, and avoid the use of the instrument as a dissector immediately after its activation.


Asunto(s)
Procedimientos Quirúrgicos Ultrasónicos/instrumentación , Animales , Quemaduras/prevención & control , Calor , Hígado , Seguridad , Piel , Sus scrofa , Porcinos , Termografía , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...