Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7883, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570567

RESUMEN

In this work, we identified the trail pheromone of the ant Crematogaster scutellaris. We combined gas chromatography-mass spectrometry analysis of extracts from the hind tibia, the location of the respective glands, with automated trail following assays. The study found tridecan-2-ol to be the strongest discriminator between hind tibia and other body part extracts. Tridecan-2-ol elicited trail-following behaviour at concentrations of 1 ng/µL. A separation of the enantiomers showed responses to (R)-tridecan-2-ol already at 0.001 ng/µL and only at a 1000-fold higher concentration for (S)-tridecan-2-ol, suggesting that only the R enantiomer is used by C. scutellaris in its natural environment. We also found strong behavioural responses to 2-dodecanol, a substance that was not detectable in the hind tibia extract of C. scutellaris, but which has been reported to be the trail pheromone of the related species C. castanea. We discuss the contribution of these results to the 'dissection and reconstruction' of strategies and mechanisms underlying the social organization of ants.


Asunto(s)
Hormigas , Feromonas , Animales , Feromonas/análisis , Hormigas/fisiología , Conducta Animal , Conducta Alimentaria
2.
Int J Biochem Mol Biol ; 14(5): 87-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020445

RESUMEN

BACKGROUND: Phospholipids are highly diverse molecules with pleiotropic biological roles, from membrane components and signaling molecules, whose composition can change in response to both endogenous and external stimuli. Recent lipidomic studies on edible bivalve mollusks were focused on lipid nutritional value and growth requirements. However, no data are available on phospholipid profiles during bivalve larval development. In the model marine bivalve Mytilus galloprovincialis, early larvae (up to 48 hours post fertilization-hpf) undergo dramatic molecular and functional changes, including shell biogenesis and neurogenesis, that are sustained by egg lipid reserves. Changes in phospholipid composition may also occur participating in the complex processes of early development. OBJECTIVE: The lipidome of M. galloprovincialis eggs and early larval stages (24 and 48 hpf) was investigated in order to identify possible changes in phospholipid classes and related metabolic pathways that may play a role in key steps of development. MATERIALS AND METHODS: Lipidomic analysis were performed by NMR spectroscopy and liquid chromatography-mass spectrometry (LC-MS), with focus on phospholipids. Shifts in relative species composition of phosphatidylcholine, phosphatidylethanolamine, plasmalogen, and ceramide aminoethylphosphonate-CAEP, the bivalve analogue of the main mammalian ceramide sphingomyelin, were observed. Expression of genes involved in ceramide homeostasis was also modulated from eggs to early larval stages. RESULTS: The results represent the first data on changes in phospholipid composition in bivalve larvae and suggest a functional role of phospholipids in mussel early development. CONCLUSION: The results underline the importance of lipidomic studies in bivalve larvae, in both physiological conditions and in response to environmental stress.

3.
Aquat Toxicol ; 264: 106727, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866166

RESUMEN

The use of alternative solutions for pest management to replace pesticides in agriculture is of great interest. Proteinaceous complexes deriving from edible oyster mushrooms were recently proposed as environmentally friendly bioinsecticides. Such complexes, composed of ostreolysin A6 (OlyA6) and pleurotolysin B (PlyB), target invertebrate-specific membrane sphingolipids in insect's midgut, causing death through the formation of transmembrane pores. In this work, the potential impact of OlyA6/PlyB complexes was tested in the Mediterranean sea urchin Paracentrotus lividus, as an indicator of environmental quality. The ability of the fluorescently tagged OlyA6 to bind sea urchin gametes (sperm, eggs), the lipidome of sea urchin gametes, and the potential toxic effects and developmental anomalies caused by OlyA6/PlyB complexes on P. lividus early development (embryo, larvae) were investigated. The binding of the fluorescently tagged OlyA6 could be observed only in sea urchin eggs, which harbor OlyA6 sphingolipid membrane receptors, conversely to sperm. High protein concentrations affected sea urchin fertilization (>750 µg/L) and early development (> 375 µg/L in embryos; >100 µg/L in larvae), by causing toxicity and morphological anomalies in embryos and larvae. The main anomalies consisted in delayed embryos and incorrect migration of the primary mesenchyme cells that caused larval skeletal anomalies. The classification of these anomalies indicated a slight environmental impact of OlyA6/PlyB complexes at concentrations higher than 750 µg/L. Such impact should not persist in the marine environment, due to the reversible anomalies observed in sea urchin embryos and larvae that may promote defense strategies. However, before promoting the use of OlyA6/PlyB complexes as bio-pesticides at low concentrations, further studies on other marine coastal species are needed.


Asunto(s)
Paracentrotus , Plaguicidas , Contaminantes Químicos del Agua , Animales , Masculino , Contaminantes Químicos del Agua/toxicidad , Semen , Larva , Embrión no Mamífero
4.
Food Chem ; 410: 135360, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628919

RESUMEN

The aim of this paper is to provide a detailed characterisation of grape lipidome. To achieve this objective, it starts by describing a pipeline implemented in R software to allow the semi-automatic annotation of the detected lipid species. It also provides an extensive description of the different properties of each molecule (such as retention time dependencies, mass accuracy, adduct formation and fragmentation patterns), which allowed the annotations to be made more accurately. Most annotated lipids in the grape samples were (lyso)glycerophospholipids and glycerolipids, although a few free fatty acids, hydroxyceramides and sitosterol esters were also observed. The proposed pipeline also allowed the identification of a series of methylated glycerophosphates never previously observed in grapes. The current results highlight the importance of expanding chemical analyses beyond the classical lipid categories.


Asunto(s)
Lípidos , Vitis , Lípidos/química , Vitis/química , Lipidómica/métodos , Espectrometría de Masas en Tándem/métodos , Ácidos Grasos no Esterificados
5.
Biology (Basel) ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36552259

RESUMEN

Heterotrich ciliates typically retain toxic substances in specialized ejectable organelles, called extrusomes, which are used in predator-prey interactions. In this study, we analysed the chemical defence strategy of the freshwater heterotrich ciliate Stentor polymorphus against the predatory ciliate Coleps hirtus, and the microturbellarian flatworm Stenostomum sphagnetorum. The results showed that S. polymorphus is able to defend itself against these two predators by deploying a mix of bioactive sterols contained in its extrusomes. Sterols were isolated in vivo and characterized by liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR), as ergosterol, 7-dehydroporiferasterol, and their two peroxidized analogues. The assessment of the toxicity of ergosterol and ergosterol peroxide against various organisms, indicated that these sterols are essential for the effectiveness of the chemical defence in S. polymorphus.

6.
Mar Drugs ; 20(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36355005

RESUMEN

Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized ß-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of ß-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound.


Asunto(s)
Ciclodextrinas , Sesquiterpenos , beta-Ciclodextrinas , Ciclodextrinas/farmacología , Ciclodextrinas/química , beta-Ciclodextrinas/química , Sesquiterpenos/farmacología , Solubilidad
7.
Genome Biol Evol ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36256613

RESUMEN

Pore-forming toxins are an important component of the venom of many animals. Actinoporins are potent cytolysins that were first detected in the venom of sea anemones; however, they are occasionally found in animals other than cnidarians and are expanded in a few predatory gastropods. Here, we report the presence of 27 unique actinoporin-like genes with monophyletic origin in Mytilus galloprovincialis, which we have termed mytiporins. These mytiporins exhibited a remarkable level of molecular diversity and gene presence-absence variation, which warranted further studies aimed at elucidating their functional role. We structurally and functionally characterized mytiporin-1 and found significant differences from the archetypal actinoporin fragaceatoxin C. Mytiporin-1 showed weaker permeabilization activity, no specificity towards sphingomyelin, and weak activity in model lipid systems with negatively charged lipids. In contrast to fragaceatoxin C, which forms octameric pores, functional mytiporin-1 pores on negatively charged lipid membranes were hexameric. Similar hexameric pores were observed for coluporin-26 from Cumia reticulata and a conoporin from Conus andremenezi. This indicates that also other molluscan actinoporin-like proteins differ from fragaceatoxin C. Although the functional role of mytiporins in the context of molluscan physiology remains to be elucidated, the lineage-specific gene family expansion event that characterizes mytiporins indicates that strong selective forces acted on their molecular diversification. Given the tissue distribution of mytiporins, this process may have broadened the taxonomic breadth of their biological targets, which would have important implications for digestive processes or mucosal immunity.


Asunto(s)
Venenos de Cnidarios , Mytilus , Anémonas de Mar , Animales , Mytilus/genética , Venenos de Cnidarios/genética , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Lípidos
8.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142806

RESUMEN

Mycotoxin contamination of maize kernels by fungal pathogens like Fusarium verticillioides and Aspergillus flavus is a chronic global challenge impacting food and feed security, health, and trade. Maize lipoxygenase genes (ZmLOXs) synthetize oxylipins that play defense roles and govern host-fungal interactions. The current study investigated the involvement of ZmLOXs in maize resistance against these two fungi. A considerable intraspecific genetic and transcript variability of the ZmLOX family was highlighted by in silico analysis comparing publicly available maize pan-genomes and pan-transcriptomes, respectively. Then, phenotyping and expression analysis of ZmLOX genes along with key genes involved in oxylipin biosynthesis were carried out in a maize mutant carrying a Mu transposon insertion in the ZmLOX4 gene (named UFMulox4) together with Tzi18, Mo17, and W22 inbred lines at 3- and 7-days post-inoculation with F. verticillioides and A. flavus. Tzi18 showed the highest resistance to the pathogens coupled with the lowest mycotoxin accumulation, while UFMulox4 was highly susceptible to both pathogens with the most elevated mycotoxin content. F. verticillioides inoculation determined a stronger induction of ZmLOXs and maize allene oxide synthase genes as compared to A. flavus. Additionally, oxylipin analysis revealed prevalent linoleic (18:2) peroxidation by 9-LOXs, the accumulation of 10-oxo-11-phytoenoic acid (10-OPEA), and triglyceride peroxidation only in F. verticillioides inoculated kernels of resistant genotypes.


Asunto(s)
Fumonisinas , Fusarium , Micotoxinas , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Fusarium/metabolismo , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Micotoxinas/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triglicéridos/metabolismo , Zea mays/metabolismo
9.
Plants (Basel) ; 11(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956464

RESUMEN

Juglans regia (L.) is cultivated worldwide for its nutrient-rich nuts. In Italy, despite the growing demand, walnut cultivation has gone through a strong decline in recent decades, which led to Italy being among the top five net importing countries. To promote the development of local high-quality Italian walnut production, we devised a multidisciplinary project to highlight the distinctive traits of three varieties grown in the mountainous region Trentino (northeast of Italy): the heirloom 'Bleggiana', a second local accession called local Franquette and the French cultivar 'Lara', recently introduced in the local production to increase yield. The genetic characterization confirmed the uniqueness of 'Bleggiana' and revealed local Franquette as a newly described autochthonous variety, thus named 'Blegette'. The metabolic profiles highlighted a valuable nutritional composition of the local varieties, richer in polyphenols and with a lower ω-6/ω-3 ratio than the commercial 'Lara'. 'Blegette' obtained the highest preference scores from consumers for both the visual aspect and tasting; however, the volatile organic compound profiles did not discriminate among the characterized cultivars. The described local varieties represent an interesting reservoir of walnut genetic diversity and quality properties, which deserve future investigation on agronomically useful traits (e.g., local adaptation and water usage) for a high-quality and sustainable production.

10.
Membranes (Basel) ; 12(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35877858

RESUMEN

Periodontal disease is a chronic oral inflammatory disorder initiated by pathobiontic bacteria found in dental plaques-complex biofilms on the tooth surface. The disease begins as an acute local inflammation of the gingival tissue (gingivitis) and can progress to periodontitis, which eventually leads to the formation of periodontal pockets and ultimately results in tooth loss. The main problem in periodontology is that the diagnosis is based on the assessment of the already obvious tissue damage. Therefore, it is necessary to improve the current diagnostics used to assess periodontal disease. Using lipidomic analyses, we show that both crucial periodontal pathogens, Porphyromonas gingivalis and Tannerella forsythia, synthesize ceramide phosphoethanolamine (CPE) species, membrane sphingolipids not typically found in vertebrates. Previously, it was shown that this particular lipid can be specifically detected by an aegerolysin protein, erylysin A (EryA). Here, we show that EryA can specifically bind to CPE species from the total lipid extract from P. gingivalis. Furthermore, using a fluorescently labelled EryA-mCherry, we were able to detect CPE species in clinical samples of dental plaque from periodontal patients. These results demonstrate the potential of specific periodontal pathogen-derived lipids as biomarkers for periodontal disease and other chronic inflammatory diseases.

11.
Front Mol Biosci ; 9: 902706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693554

RESUMEN

Ostreolysin A6 (OlyA6) is a 15 kDa protein produced by the oyster mushroom (Pleurotus ostreatus). It belongs to the aegerolysin family of proteins and binds with high affinity to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with its partnering protein with the membrane-attack-complex/perforin domain, pleurotolysin B (PlyB), OlyA6 can form bicomponent 13-meric transmembrane pores in artificial and biological membranes containing the aegerolysin lipid receptor, CPE. This pore formation is the main underlying molecular mechanism of potent and selective insecticidal activity of OlyA6/PlyB complexes against two economically important coleopteran plant pests: the western corn rootworm and the Colorado potato beetle. In contrast to insects, the main sphingolipid in cell membranes of marine invertebrates (i.e., molluscs and cnidarians) is ceramide aminoethylphosphonate (CAEP), a CPE analogue built on a phosphono rather than the usual phosphate group in its polar head. Our targeted lipidomic analyses of the immune cells (hemocytes) of the marine bivalve, the mussel Mytilus galloprovincialis, confirmed the presence of 29.0 mol% CAEP followed by 36.4 mol% of phosphatidylcholine and 34.6 mol% of phosphatidylethanolamine. Further experiments showed the potent binding of OlyA6 to artificial lipid vesicles supplemented with mussel CAEP, and strong lysis of these vesicles by the OlyA6/PlyB mixture. In Mytilus haemocytes, short term exposure (max. 1 h) to the OlyA6/PlyB mixture induced lysosomal membrane destabilization, decreased phagocytic activity, increased Annexin V binding and oxyradical production, and decreased levels of reduced glutathione, indicating rapid damage of endo-lysosomal and plasma membranes and oxidative stress. Our data suggest CAEP as a novel high-affinity receptor for OlyA6 and a target for cytolytic OlyA6/PlyB complexes.

12.
Chembiochem ; 23(14): e202200202, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35674331

RESUMEN

Iron-sulfur clusters are thought to be ancient cofactors that could have played a role in early protometabolic systems. Thus far, redox active, prebiotically plausible iron-sulfur clusters have always contained cysteine ligands to the cluster. However, extant iron-sulfur proteins can be found to exploit other modes of binding, including ligation by histidine residues, as seen with [2Fe-2S] Rieske and MitoNEET proteins. Here, we investigated the ability of cysteine- and histidine-containing peptides to coordinate a mononuclear Fe2+ center and a [2Fe-2S] cluster and compare their properties with purified iron-sulfur proteins. The iron-sulfur peptides were characterized by UV-vis, circular dichroism, and paramagnetic NMR spectroscopies and cyclic voltammetry. Small (≤6 amino acids) peptides can coordinate [2Fe-2S] clusters through a combination of cysteine and histidine residues with similar reduction potentials as their corresponding proteins. Such complexes may have been important for early cell-like systems.


Asunto(s)
Histidina , Proteínas Hierro-Azufre , Cisteína/metabolismo , Histidina/química , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Péptidos/metabolismo , Azufre/metabolismo
13.
ACS Earth Space Chem ; 6(5): 1221-1226, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35620317

RESUMEN

Wet-dry cycles driven by heating to high temperatures are frequently invoked for the prebiotic synthesis of peptides. Similarly, iron-sulfur clusters are often cited as an example of an ancient catalyst that helped prune early chemical systems into metabolic-like pathways. Because extant iron-sulfur clusters are metallocofactors of protein enzymes and nearly ubiquitous across biology, a reasonable hypothesis is that prebiotic iron-sulfur peptides formed on the early Earth. However, iron-sulfur clusters are coordinated by multiple cysteine residues, and the stability of cysteines to the heat steps of wet-dry cycles has not been determined. It, therefore, has remained unclear if the peptides needed to stabilize the formation of iron-sulfur clusters could have formed. If not, then iron-sulfur-dependent activity may have emerged later, when milder, more biological-like peptide synthesis machinery took hold. Here, we report the thermal stability of cysteine-containing peptides. We show that temperatures of 150 °C lead to the rapid degradation of cysteinyl peptides. However, the presence of Mg2+ at environmentally reasonable concentrations leads to significant protection. Thiophilic metal ions also protect against degradation at 150 °C but require concentrations not frequently observed in the environment. Nevertheless, cysteine-containing peptides are stable at lower, prebiotically plausible temperatures in seawater, carbonate lake, and ferrous lake conditions. The data are consistent with the persistence of cysteine-containing peptides on the early Earth in environments rich in metal ions. High concentrations of Mg2+ are common intra- and extra-cellularly, suggesting that the protection afforded by Mg2+ may reflect conditions that were present on the prebiotic Earth.

14.
Cryobiology ; 106: 84-90, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35317992

RESUMEN

Cell-membrane fluidity is a fundamental parameter in cold resistance. It is regulated by a fine tuning of lipid composition, usually involving a great chemical diversity among head-groups, chain lengths, and degree of unsaturation. To give new insights on Alpine chironomid cold adaptation, we analysed the lipid membrane composition of Diamesa tonsa and Pseudodiamesa branickii, two species known to have different cold-tolerance, stronger in the former. Membrane lipid composition was analysed by NMR and HPLC-MS in larvae under natural (4 °C) and laboratory conditions (30 min at - 4 °C). In both species the major class of membrane lipids were phosphatidylethanolamine (PE), reaching 93% in D. tonsa and 80% in P. branickii, followed by a minor relative amount of phosphatidylcholine (PC). Phospholipids (PL) acyl chains were highly unsaturated given the presence of a relevant amount of polyunsaturated fatty acid (PUFA), among which a high proportion of ω-3 chains. This study demonstrated that these species have a similar lipidome (e.g. relevant amount of PUFA and predominance of PE), but with relevant differences on which to base different membrane fluidity: (i) a higher unsaturation index and chain length of both PE and PC and a higher ratio PE/PC ratio in D. tonsa than in P. branickii; (ii) the absence of modifications in the lipid composition in D. tonsa under sub-zero temperature. These differences might support the different cold-tolerance of the two species. In fact, we suggest that the high PE/PC ratio and the low sterols content (as in D. tonsa) could be involved in the formation of highly deformable membranes increasing their capacity to survive freezing. Interestingly, LC-MS analysis of D. tonsa lipidome revealed a new class of lipids that we named 'PpC', absent in P. branickii, that is worth investigating.


Asunto(s)
Chironomidae , Lipidómica , Animales , Frío , Criopreservación/métodos , Lípidos de la Membrana , Fosfatidilcolinas , Fosfolípidos
15.
J Eukaryot Microbiol ; 69(5): e12887, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35014102

RESUMEN

Ciliates are a rich source of molecules synthesized to socialize, compete ecologically, and interact with prey and predators. Their isolation from laboratory cultures is often straightforward, permitting the study of their mechanisms of action and their assessment for applied research. This review focuses on three classes of these bioactive molecules: (i) water-borne, cysteine-rich proteins that are used as signaling pheromones in self/nonself recognition phenomena; (ii) cell membrane-associated lipophilic terpenoids that are used in interspecies competitions for habitat colonization; (iii) cortical granule-associated molecules of various chemical nature that primarily serve offence/defense functions.


Asunto(s)
Cilióforos , Comunicación Celular , Cilióforos/metabolismo , Ecosistema , Feromonas , Transducción de Señal
16.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34870580

RESUMEN

Strain 3P27G6T was isolated from an artesian well connected to the thermal water basin of Comano Terme, Province of Trento, Italy. In phylogenetic analyses based on multilocus sequence analysis, strain 3P27G6T clustered together with Mesorhizobium australicum WSM2073T. Genome sequencing produced a 99.51 % complete genome, with a length of 7 363 057 bp and G+C content of 63.53 mol%, containing 6897 coding sequences, 55 tRNA and three rRNA. Average nucleotide identity analysis revealed that all distances calculated between strain 3P27G6T and the other Mesorhizobium genomes were below 0.9, indicating that strain 3P27G6T represents a new species. Therefore, we propose the name Mesorhizobium comanense sp. nov. with the type strain 3P27G6T (=DSM 110654T=CECT 30067T). Strain 3P27G6T is a Gram-negative, rod-shaped, aerobic bacterium. Growth condition, antibiotic susceptibility, metabolic and fatty acid-methyl esters profiles of the strain were determined. Only few nodulation and nitrogen fixation genes were found in the genome, suggesting that this strain may not be specialized in nodulation or in nitrogen fixation.


Asunto(s)
Agua Dulce/microbiología , Agua Subterránea , Mesorhizobium , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Agua Subterránea/microbiología , Italia , Mesorhizobium/clasificación , Mesorhizobium/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Metabolites ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940585

RESUMEN

Lipids play many essential roles in living organisms, which accounts for the great diversity of these amphiphilic molecules within the individual lipid classes, while their composition depends on intrinsic and extrinsic factors. Recent developments in mass spectrometric methods have significantly contributed to the widespread application of the liquid chromatography-mass spectrometry (LC-MS) approach to the analysis of plant lipids. However, only a few investigators have studied the extensive composition of grape lipids. The present work describes the development of an ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method that includes 8098 MRM; the method has been validated using a reference sample of grapes at maturity with a successful analysis and semi-quantification of 412 compounds. The aforementioned method was subsequently applied also to the analysis of the lipid profile variation during the Ribolla Gialla cv. grape maturation process. The partial least squares (PLS) regression model fitted to our experimental data showed that a higher proportion of certain glycerophospholipids (i.e., glycerophosphoethanolamines, PE and glycerophosphoglycerols, PG) and of some hydrolysates from those groups (i.e., lyso-glycerophosphocholines, LPC and lyso-glycerophosphoethanolamines, LPE) can be positively associated with the increasing °Brix rate, while a negative association was found for ceramides (CER) and galactolipids digalactosyldiacylglycerols (DGDG). The validated method has proven to be robust and informative for profiling grape lipids, with the possibility of application to other studies and matrices.

18.
Toxins (Basel) ; 13(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209983

RESUMEN

Ostreolysin A6 (OlyA6) is a protein produced by the oyster mushroom (Pleurotus ostreatus). It binds to membrane sphingomyelin/cholesterol domains, and together with its protein partner, pleurotolysin B (PlyB), it forms 13-meric transmembrane pore complexes. Further, OlyA6 binds 1000 times more strongly to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with PlyB, OlyA6 has potent and selective insecticidal activity against the western corn rootworm. We analysed the histological alterations of the midgut wall columnar epithelium of western corn rootworm larvae fed with OlyA6/PlyB, which showed vacuolisation of the cell cytoplasm, swelling of the apical cell surface into the gut lumen, and delamination of the basal lamina underlying the epithelium. Additionally, cryo-electron microscopy was used to explore the membrane interactions of the OlyA6/PlyB complex using lipid vesicles composed of artificial lipids containing CPE, and western corn rootworm brush border membrane vesicles. Multimeric transmembrane pores were formed in both vesicle preparations, similar to those described for sphingomyelin/cholesterol membranes. These results strongly suggest that the molecular mechanism of insecticidal action of OlyA6/PlyB arises from specific interactions of OlyA6 with CPE, and the consequent formation of transmembrane pores in the insect midgut.


Asunto(s)
Escarabajos/efectos de los fármacos , Proteínas Fúngicas/toxicidad , Proteínas Hemolisinas/toxicidad , Insecticidas/toxicidad , Larva/efectos de los fármacos , Animales , Escarabajos/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Larva/metabolismo , Esfingomielinas/metabolismo
19.
Molecules ; 26(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200677

RESUMEN

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols, and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues. Even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D exchange processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

20.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669538

RESUMEN

Proanthocyanidins are key metabolites that explain wine sensorial character (bitterness and astringency) and red wine color changes during aging. Therefore, a fast and accurate method to evaluate the degree of polymerization and the structural composition of the polymeric proanthocyanidins is a crucial analytical tool. Phloroglucinolysis is the most used method for this analysis but, unfortunately, the phloroglucinol adducts of the monomeric flavan-3-ols are not commercially available, making the results less accurate. The aim of this work was the isolation by semi-preparative high performance liquid chromatography (HPLC) of these non-commercial compounds and their use for the development of an accurate UHPLC-MS/MS protocol. The purity of each adduct was established via quantitative 1H-nuclear magnetic resonance (NMR) measurements with 3-trimethylsilyl-propionic-d4 acid sodium salt as the calibration standard. The developed method was applied to evaluate the proanthocyanidins profile of Sagrantino di Montefalco wines in comparison to other well-known tannic wines. Commercial, 6-8 years old Sagrantino wines were demonstrated to be very rich in epicatechin type B procyanidins, to have low galloylation %, and to have a high mean degree of polymerization of the proanthocyanidins with respect to the other analyzed wines.


Asunto(s)
Floroglucinol/química , Proantocianidinas/análisis , Vino/análisis , Calibración , Cromatografía Líquida de Alta Presión , Flavonoides/química , Polimerizacion , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA