Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 42(18): 11697-706, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25217588

RESUMEN

In most organisms, the widely conserved 1-methyl-adenosine58 (m1A58) tRNA modification is catalyzed by an S-adenosyl-L-methionine (SAM)-dependent, site-specific enzyme TrmI. In archaea, TrmI also methylates the adjacent adenine 57, m1A57 being an obligatory intermediate of 1-methyl-inosine57 formation. To study this multi-site specificity, we used three oligoribonucleotide substrates of Pyrococcus abyssi TrmI (PabTrmI) containing a fluorescent 2-aminopurine (2-AP) at the two target positions and followed the RNA binding kinetics and methylation reactions by stopped-flow and mass spectrometry. PabTrmI did not modify 2-AP but methylated the adjacent target adenine. 2-AP seriously impaired the methylation of A57 but not A58, confirming that PabTrmI methylates efficiently the first adenine of the A57A58A59 sequence. PabTrmI binding provoked a rapid increase of fluorescence, attributed to base unstacking in the environment of 2-AP. Then, a slow decrease was observed only with 2-AP at position 57 and SAM, suggesting that m1A58 formation triggers RNA release. A model of the protein-tRNA complex shows both target adenines in proximity of SAM and emphasizes no major tRNA conformational change except base flipping during the reaction. The solvent accessibility of the SAM pocket is not affected by the tRNA, thereby enabling S-adenosyl-L-homocysteine to be replaced by SAM without prior release of monomethylated tRNA.


Asunto(s)
Adenina/metabolismo , Proteínas Arqueales/metabolismo , ARN de Transferencia de Aspártico/metabolismo , ARNt Metiltransferasas/metabolismo , 2-Aminopurina/metabolismo , Proteínas Arqueales/química , Secuencia de Bases , Modelos Moleculares , Pyrococcus abyssi/enzimología , ARN de Transferencia de Aspártico/química , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , ARNt Metiltransferasas/química
2.
BMC Struct Biol ; 11: 48, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22168821

RESUMEN

BACKGROUND: tRNA m(1)A58 methyltransferases (TrmI) catalyze the transfer of a methyl group from S-adenosyl-L-methionine to nitrogen 1 of adenine 58 in the T-loop of tRNAs from all three domains of life. The m(1)A58 modification has been shown to be essential for cell growth in yeast and for adaptation to high temperatures in thermophilic organisms. These enzymes were shown to be active as tetramers. The crystal structures of five TrmIs from hyperthermophilic archaea and thermophilic or mesophilic bacteria have previously been determined, the optimal growth temperature of these organisms ranging from 37°C to 100°C. All TrmIs are assembled as tetramers formed by dimers of tightly assembled dimers. RESULTS: In this study, we present a comparative structural analysis of these TrmIs, which highlights factors that allow them to function over a large range of temperature. The monomers of the five enzymes are structurally highly similar, but the inter-monomer contacts differ strongly. Our analysis shows that bacterial enzymes from thermophilic organisms display additional intermolecular ionic interactions across the dimer interfaces, whereas hyperthermophilic enzymes present additional hydrophobic contacts. Moreover, as an alternative to two bidentate ionic interactions that stabilize the tetrameric interface in all other TrmI proteins, the tetramer of the archaeal P. abyssi enzyme is strengthened by four intersubunit disulfide bridges. CONCLUSIONS: The availability of crystal structures of TrmIs from mesophilic, thermophilic or hyperthermophilic organisms allows a detailed analysis of the architecture of this protein family. Our structural comparisons provide insight into the different molecular strategies used to achieve the tetrameric organization in order to maintain the enzyme activity under extreme conditions.


Asunto(s)
Biología Computacional , Multimerización de Proteína , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Bacterias/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Pyrococcus abyssi/enzimología , Alineación de Secuencia , Especificidad de la Especie , Temperatura
3.
Structure ; 19(3): 282-91, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21397180

RESUMEN

Posttranscriptional chemical modifications of RNA are maturation steps necessary for their correct functioning in translation during protein synthesis. Various structures of RNA-modifying enzymes complexed with RNA fragments or full-length tRNA have been obtained, mimicking several stages along the catalytic cycle such as initial RNA binding, covalent intermediate formation, or RNA-product binding. We summarize here the strategies that have been used to trap and crystallize these stable complexes. Absence of the cosubstrate transferring the chemical group leads to the Michaelis complex, whereas use of a cosubstrate analog to a ternary complex. 5-fluoro-pyrimidine-containing mini RNAs have been used as a general means to trap RNA m(5)U methyltransferase covalent complexes and RNA product/pseudouridine synthase complexes. Altogether, these structures have brought key information about enzyme/RNA recognition and highlighted the details of several catalytic steps of the reactions.


Asunto(s)
Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias , Biocatálisis , Cristalización , Cristalografía por Rayos X , Eucariontes , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Cinética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Biosíntesis de Proteínas , Pirimidinas/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética
4.
Nucleic Acids Res ; 38(18): 6206-18, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20483913

RESUMEN

The S-adenosyl-L-methionine dependent methylation of adenine 58 in the T-loop of tRNAs is essential for cell growth in yeast or for adaptation to high temperatures in thermophilic organisms. In contrast to bacterial and eukaryotic tRNA m(1)A58 methyltransferases that are site-specific, the homologous archaeal enzyme from Pyrococcus abyssi catalyzes the formation of m(1)A also at the adjacent position 57, m(1)A57 being a precursor of 1-methylinosine. We report here the crystal structure of P. abyssi tRNA m(1)A57/58 methyltransferase ((Pab)TrmI), in complex with S-adenosyl-L-methionine or S-adenosyl-L-homocysteine in three different space groups. The fold of the monomer and the tetrameric architecture are similar to those of the bacterial enzymes. However, the inter-monomer contacts exhibit unique features. In particular, four disulfide bonds contribute to the hyperthermostability of the archaeal enzyme since their mutation lowers the melting temperature by 16.5°C. His78 in conserved motif X, which is present only in TrmIs from the Thermococcocales order, lies near the active site and displays two alternative conformations. Mutagenesis indicates His78 is important for catalytic efficiency of (Pab)TrmI. When A59 is absent in tRNA(Asp), only A57 is modified. Identification of the methylated positions in tRNAAsp by mass spectrometry confirms that (Pab)TrmI methylates the first adenine of an AA sequence.


Asunto(s)
Adenina/metabolismo , Proteínas Arqueales/química , Pyrococcus abyssi/enzimología , ARN de Transferencia de Aspártico/metabolismo , ARNt Metiltransferasas/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dimerización , Disulfuros/química , Estabilidad de Enzimas , Histidina/química , Modelos Moleculares , Mutación , ARN de Transferencia de Aspártico/química , S-Adenosilmetionina/química , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...