Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(4): e0235123, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38517167

RESUMEN

In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.


Asunto(s)
Euryarchaeota , Oryza , Suelo/química , Oryza/microbiología , Fermentación , Tartratos/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Filogenia , Composición de Base , Análisis de Secuencia de ADN , Bacterias , Bacterias Anaerobias/metabolismo , Euryarchaeota/metabolismo , Firmicutes/metabolismo , Bacterias Gramnegativas/genética , Metano/metabolismo
2.
BMC Microbiol ; 23(1): 45, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809975

RESUMEN

BACKGROUND: The phylum Chloroflexi is highly abundant in a wide variety of wastewater treatment bioreactors. It has been suggested that they play relevant roles in these ecosystems, particularly in degrading carbon compounds and on structuring flocs or granules. Nevertheless, their function is not yet well understood as most species have not been isolated in axenic cultures. Here we used a metagenomic approach to investigate Chloroflexi diversity and their metabolic potential in three environmentally different bioreactors: a methanogenic full-scale reactor, a full-scale activated sludge reactor and a lab scale anammox reactor. RESULTS: Differential coverage binning approach was used to assemble the genomes of 17 new Chloroflexi species, two of which are proposed as new Candidatus genus. In addition, we recovered the first representative genome belonging to the genus 'Ca. Villigracilis'. Even though samples analyzed were collected from bioreactors operating under different environmental conditions, the assembled genomes share several metabolic features: anaerobic metabolism, fermentative pathways and several genes coding for hydrolytic enzymes. Interestingly, genome analysis from the anammox reactor indicated a putative role of Chloroflexi in nitrogen conversion. Genes related to adhesiveness and exopolysaccharides production were also detected. Complementing sequencing analysis, filamentous morphology was detected by Fluorescent in situ hybridization. CONCLUSION: Our results suggest that Chloroflexi participate in organic matter degradation, nitrogen removal and biofilm aggregation, playing different roles according to the environmental conditions.


Asunto(s)
Chloroflexi , Aguas del Alcantarillado , Chloroflexi/genética , Chloroflexi/metabolismo , Ecosistema , Hibridación Fluorescente in Situ , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Anaerobiosis , Nitrógeno/metabolismo , Oxidación-Reducción
3.
Bioresour Technol ; 343: 126102, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34634462

RESUMEN

Bacterial community structure and dynamics in anaerobic digesters are primarily influenced by feedstock composition. It is therefore important to unveil microbial traits that explain microbiome variations in response to substrate changes. Here, gene and genome-centric metagenomics were used to examine microbiome dynamics in four laboratory-scale reactors, in which sewage sludge was co-digested with increasing amounts of food waste. A co-occurrence network revealed microbiome shifts in response to changes in substrate composition and concentration. Food waste concentration correlated with extracellular enzymes and metagenome-assembled genomes (MAGs) involved in the degradation of complex carbohydrates commonly found in fruits and plant cell walls as well as with the abundance of hydrolytic MAGs. A key role was attributed to Proteiniphillum for being the only bacteria that encoded the complete pectin degradation pathway. These results suggest that changes of feedstock composition establish new microbial niches for bacteria with the capacity to degrade newly added substrates.


Asunto(s)
Microbiota , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Digestión , Alimentos , Metano , Aguas del Alcantarillado
4.
ISME J ; 15(3): 636-648, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067586

RESUMEN

Bacterial viruses are widespread and abundant across natural and engineered habitats. They influence ecosystem functioning through interactions with their hosts. Laboratory studies of phage-host pairs have advanced our understanding of phenotypic and genetic diversification in bacteria and phages. However, the dynamics of phage-host interactions have been seldom recorded in complex natural environments. We conducted an observational metagenomic study of the dynamics of interaction between Gordonia and their phages using a three-year data series of samples collected from a full-scale wastewater treatment plant. The aim was to obtain a comprehensive picture of the coevolution dynamics in naturally evolving populations at relatively high time resolution. Coevolution was followed by monitoring changes over time in the CRISPR loci of Gordonia metagenome-assembled genome, and reciprocal changes in the viral genome. Genome-wide analysis indicated low strain variability of Gordonia, and almost clonal conservation of the trailer end of the CRISPR loci. Incorporation of newer spacers gave rise to multiple coexisting bacterial populations. The host population carrying a shorter CRISPR locus that contain only ancestral spacers, which has not acquired newer spacers against the coexisting phages, accounted for more than half of the total host abundance in the majority of samples. Phages genome co-evolved by introducing directional changes, with no preference for mutations within the protospacer and PAM regions. Metagenomic reconstruction of time-resolved variants of host and viral genomes revealed how the complexity at the population level has important consequences for bacteria-phage coexistence.


Asunto(s)
Bacteriófagos , Bacterias , Bacteriófagos/genética , Biotecnología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ecosistema
5.
Water Sci Technol ; 79(10): 1956-1965, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31294712

RESUMEN

Addition of food waste (FW) as a co-substrate in anaerobic digesters of wastewater treatment plants is a desirable strategy towards achievement of the potential of wastewater treatment plants to become energy-neutral, diverting at the same time organic waste from landfills. Because substrate type is a driver of variations in phylogenetic structure of digester microbiomes, it is critical to understand how microbial communities respond to changes in substrate composition and concentration. In this work, high throughput sequencing was used to monitor the dynamics of microbiome changes in four parallel laboratory-scale anaerobic digesters treating sewage sludge during acclimation to an increasing amount of food waste. A co-occurrence network was constructed using data from 49 metagenomes sampled over the 161 days of the digesters' operation. More than half of the nodes in the network were clustered in two major modules, i.e. groups of highly interconnected taxa that had much fewer connections with taxa outside the group. The dynamics of co-occurrence networks evidenced shifts that occurred within microbial communities due to the addition of food waste in the co-digestion process. A diverse and reproducible group of hydrolytic and fermentative bacteria, syntrophic bacteria and methanogenic archaea appeared to grow in a concerted fashion to allow stable performance of anaerobic co-digestion at high FW.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos , Metano , Filogenia
6.
mSystems ; 4(4)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266798

RESUMEN

Understanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of 3 years, including a 9-month period of disturbance characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons, and the in situ growth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the rRNA (rrn) operon. Despite moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, is the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions.IMPORTANCE Disturbance is a key determinant of community assembly and dynamics in natural and engineered ecosystems. Microbiome response to disturbance is thought to be influenced by bacterial growth traits and life history strategies. In this time series observational study, the response to disturbance of microbial communities in a full-scale activated sludge wastewater treatment plant was assessed by computing specific cellular traits of genomes retrieved from metagenomes. It was found that the genomes observed in disturbed periods have more copies of the rRNA operon than genomes observed in stable periods, whereas the in situ mean relative growth rates of bacteria present during stable and disturbed periods were indistinguishable. From these intriguing observations, we infer that the length of the lag phase might be a growth trait that affects the microbial response to disturbance. Further exploration of this hypothesis could contribute to better understanding of the adaptive response of microbiomes to unsteady environmental conditions.

7.
Environ Microbiol ; 19(9): 3755-3767, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28752953

RESUMEN

Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H+ , Na+ and Cl+ pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems.


Asunto(s)
Bacteroidetes/metabolismo , Proteobacteria/metabolismo , Rodopsinas Microbianas/metabolismo , Regiones Antárticas , Bacteroidetes/genética , Ecosistema , Agua Dulce/microbiología , Genoma Bacteriano/genética , Metagenómica/métodos , Proteobacteria/genética , Rodopsinas Microbianas/genética , Agua de Mar/microbiología
8.
Genome Biol Evol ; 8(9): 2737-47, 2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27503299

RESUMEN

Understanding microbial adaptation to environmental stressors is crucial for interpreting broader ecological patterns. In the most extreme hot and cold deserts, cryptic niche communities are thought to play key roles in ecosystem processes and represent excellent model systems for investigating microbial responses to environmental stressors. However, relatively little is known about the genetic diversity underlying such functional processes in climatically extreme desert systems. This study presents the first comparative metagenome analysis of cyanobacteria-dominated hypolithic communities in hot (Namib Desert, Namibia) and cold (Miers Valley, Antarctica) hyperarid deserts. The most abundant phyla in both hypolith metagenomes were Actinobacteria, Proteobacteria, Cyanobacteria and Bacteroidetes with Cyanobacteria dominating in Antarctic hypoliths. However, no significant differences between the two metagenomes were identified. The Antarctic hypolithic metagenome displayed a high number of sequences assigned to sigma factors, replication, recombination and repair, translation, ribosomal structure, and biogenesis. In contrast, the Namib Desert metagenome showed a high abundance of sequences assigned to carbohydrate transport and metabolism. Metagenome data analysis also revealed significant divergence in the genetic determinants of amino acid and nucleotide metabolism between these two metagenomes and those of soil from other polar deserts, hot deserts, and non-desert soils. Our results suggest extensive niche differentiation in hypolithic microbial communities from these two extreme environments and a high genetic capacity for survival under environmental extremes.


Asunto(s)
Ambientes Extremos , Metagenoma , Microbiota , Estrés Fisiológico , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Regiones Antárticas , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Clima Desértico , Proteobacteria/genética , Proteobacteria/aislamiento & purificación
9.
Environ Microbiol ; 18(6): 1875-88, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26470632

RESUMEN

In hyperarid ecosystems, macroscopic communities are often restricted to cryptic niches, such as hypoliths (microbial communities found beneath translucent rocks), which are widely distributed in hyperarid desert environments. While hypolithic communities are considered to play a major role in productivity, the functional guilds implicated in these processes remain unclear. Here, we describe the metagenomic sequencing, assembly and analysis of hypolithic microbial communities from the Namib Desert. Taxonomic analyses using Small Subunit phylogenetic markers showed that bacterial phylotypes (93%) dominated the communities, with relatively small proportions of archaea (0.43%) and fungi (5.6%). Refseq-viral database analysis showed the presence of double stranded DNA viruses (7.8% contigs), dominated by Caudovirales (59.2%). Analysis of functional genes and metabolic pathways revealed that cyanobacteria were primarily responsible for photosynthesis with the presence of multiple copies of genes for both photosystems I and II, with a smaller but significant fraction of proteobacterial anoxic photosystem II genes. Hypolithons demonstrated an extensive genetic capacity for the degradation of phosphonates and mineralization of organic sulphur. Surprisingly, we were unable to show the presence of genes representative of complete nitrogen cycles. Taken together, our analyses suggest an extensive capacity for carbon, phosphate and sulphate cycling but only limited nitrogen biogeochemistry.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/genética , Hongos/aislamiento & purificación , Microbiología del Suelo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Carbono/metabolismo , Clima Desértico , Ecosistema , Hongos/clasificación , Hongos/genética , Metagenómica , Filogenia , Suelo/química
10.
FEMS Microbiol Lett ; 362(8): fnv037, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25761753

RESUMEN

Hypoliths are microbial communities that live underneath translucent rocks in desert ecosystems and represent a key refuge niche in the Antarctic Dry Valleys. These cryptic microbial assemblages are crucial as they mediate numerous ecosystem processes. Here, we present the first draft genome of a hypolith isolate belonging to the α-proteobacterial class and the genus Sphingomonas. The draft genome of Sphingomonas sp. strain AntH11 shows the capacity of this organism to adapt to the extreme cold and arid conditions encountered in Antarctic desert soils. Our result also suggests that its metabolic versatility and multidrug resistance constitutes an opportunistic advantage in competition with other hypolith-colonizing microorganisms.


Asunto(s)
Genoma Bacteriano , Microbiología del Suelo , Sphingomonas/genética , Regiones Antárticas , ADN Bacteriano/genética , Clima Desértico , Farmacorresistencia Bacteriana Múltiple , Ecosistema , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingomonas/efectos de los fármacos , Sphingomonas/aislamiento & purificación
11.
Genome Announc ; 3(1)2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25573925

RESUMEN

Here, we present the draft genome of Sphingomonas sp. strain Ant20, isolated from oil-polluted soil near Scott Base, Ross Island, Antarctica. The genome of this aromatic hydrocarbon-degrading bacterium provides valuable information on the microbially mediated biodegradation of aromatic compounds in cold-climate systems.

12.
Environ Microbiol ; 17(3): 678-88, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24803003

RESUMEN

The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on ß-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower ß-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of ß-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity.


Asunto(s)
Productos Agrícolas/microbiología , Glycine max/microbiología , Consorcios Microbianos/genética , Microbiología del Suelo , Acidobacteria/clasificación , Acidobacteria/genética , Agricultura , Secuencia de Bases , Biodiversidad , Ambiente , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Verrucomicrobia/clasificación , Verrucomicrobia/genética
13.
Genome Announc ; 2(4)2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25125643

RESUMEN

The Antarctic continent is largely covered by an expansive ice sheet, but it harbors diverse terrestrial and aquatic habitats in the coastal ice-free continental margins. Here we present the draft genome of Microbacterium sp. CH12i, which was isolated from hypersaline, alkaline, and nutrient-rich groundwater from Cape Hallett, northern Victoria Land, Antarctica.

14.
Genome Announc ; 2(2)2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24723703

RESUMEN

Here, we present the draft genome sequence of Sphingobium sp. strain Ant17, an aromatic hydrocarbon-degrading bacterium that was isolated from Antarctic oil-contaminated soil. An analysis of this genome can lead to insights into the mechanisms of xenobiotic degradation processes at low temperatures and potentially aid in bioremediation applications.

15.
Genome Announc ; 2(1)2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24459282

RESUMEN

Actinobacteria are the dominant taxa in Antarctic desert soils. Here, we describe the first draft genome of a member of the genus Williamsia (strain D3) isolated from Antarctic soil. The genome of this psychrotolerant bacterium may help to elucidate crucial survival mechanisms for organisms inhabiting cold desert soil systems.

16.
PLoS One ; 7(11): e51075, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226466

RESUMEN

The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non-sustainable agricultural practices in the Pampa region.


Asunto(s)
Agricultura/métodos , Bacterias/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Microbiología del Suelo , Suelo/química , Argentina , Geografía , Filogenia , Suelo/normas
17.
Rev Argent Microbiol ; 43(2): 127-35, 2011.
Artículo en Español | MEDLINE | ID: mdl-21731976

RESUMEN

One of the main functions of environmental biotechnology is to address the study of microbial communities that provide essential services to society. Beyond the similarities with industrial and agricultural microbiology, the unique features exhibited by environmental biotechnology, such as process objectives, biomass characteristics and type and mode of feeding (substrates), allow a clear distinction from the other related disciplines. Recent advances in microbial ecology, ecophysiology, genomics and process engineering are herein reviewed to illustrate how the integration of the new knowledge can help overcome the shortcomings of classic microbiological analyses to understand, predict and optimize the performance of wastewater treatment.


Asunto(s)
Microbiología Ambiental , Consorcios Microbianos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Aerobiosis , Biodiversidad , Biomasa , Ecosistema , Predicción , Metagenómica , Microbiología del Suelo , Eliminación de Residuos Líquidos/normas , Microbiología del Agua
18.
Rev. argent. microbiol ; 43(2): 127-135, jun. 2011. ilus
Artículo en Español | LILACS | ID: lil-634684

RESUMEN

Una de las funciones principales de la biotecnología ambiental es ocuparse del estudio de comunidades microbianas que proveen servicios esenciales para la sociedad. Más allá de las similitudes que presenta con la microbiología industrial y la agrícola, la biotecnología ambiental presenta peculiaridades, tales como los objetivos de proceso, las características de la biomasa y el tipo y modo de alimentación (sustratos), que la distinguen claramente de las otras disciplinas relacionadas. En este artículo se reseñan recientes avances en la ecología microbiana, la ecofisiología, la genómica y la ingeniería de procesos, para ilustrar cómo la integración de los nuevos conocimientos permite superar las limitaciones del análisis microbiológico clásico para entender, predecir y optimizar el funcionamiento de los procesos de tratamiento de efluentes.


One of the main functions of environmental biotechnology is to address the study of microbial communities that provide essential services to society. Beyond the similarities with industrial and agricultural microbiology, the unique features exhibited by environmental biotechnology, such as process objectives, biomass characteristics and type and mode of feeding (substrates), allow a clear distinction from the other related disciplines. Recent advances in microbial ecology, ecophysiology, genomics and process engineering are herein reviewed to illustrate how the integration of the new knowledge can help overcome the shortcomings of classic microbiological analyses to understand, predict and optimize the performance of wastewater treatment.


Asunto(s)
Microbiología Ambiental , Consorcios Microbianos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Aerobiosis , Biodiversidad , Biomasa , Ecosistema , Predicción , Metagenómica , Microbiología del Suelo , Microbiología del Agua , Eliminación de Residuos Líquidos/normas
19.
Microb Ecol ; 59(3): 436-44, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19756849

RESUMEN

The aim of this work was to investigate the dynamics of assembly of bacterial populations in activated sludge flocs. We approached this question by following the development of active bacterial populations during floc development in four replicated lab-scale activated sludge reactors, in which solid retention time (SRT) was set at 4 days. The null hypothesis was that the similarities in community composition could be accounted for by the probability that the same organisms occur in more than one replicated reactor. Microscopic imaging showed that the size of flocs in reactors with biomass retention increased during the first few days until a steady-state size was reached. The diversity and community structure of the sludge in all reactors were analyzed during a period of up to ten SRT, using denaturing gradient gel electrophoresis (DGGE) of reverse-transcription polymerase chain reaction-amplified 16S rRNA. High rates of change in DGGE profiles from consecutive sampling points suggested a high level of dynamics in all reactors. This conclusion was confirmed by the application of the Raup and Crick probability-based similarity index (S(RC)) for the comparison of rRNA-based fingerprinting patterns, which indicated that bacterial communities within reactors were not significantly similar after three SRT (0.05 < S(RC) < 0.95) and became significantly dissimilar after five SRT (S(RC) < 0.05). More importantly, significant similarity between replicate reactors was observed at all times analyzed (S(RC) > 0.95). The fact that the patterns between replicates were more reproducible than expected by chance under highly dynamic conditions allowed us to reject the null hypothesis that activated sludge floc communities assemble randomly from the available source pool of bacteria. We suggest that communities progressively recruit from the available pool of bacterial species, each with particular ecological requirements that determine their time of emergence into the community.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biomasa , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Bacterias/genética , Dermatoglifia del ADN , Floculación , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Factores de Tiempo , Eliminación de Residuos Líquidos
20.
BMC Microbiol ; 8: 50, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18366740

RESUMEN

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. RESULTS: Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p < 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. CONCLUSION: These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.


Asunto(s)
ADN/genética , Dioxigenasas/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Hidrocarburos Policíclicos Aromáticos/metabolismo , Archaea/genética , Argentina , Bacterias/genética , Clonación Molecular , Análisis por Conglomerados , ADN/clasificación , ADN/aislamiento & purificación , Dioxigenasas/clasificación , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA