RESUMEN
Methods to assess ultrasound backscatter anisotropy from clinical array transducers have recently been developed. However, they do not provide information about the anisotropy of microstructural features of the specimens. This work develops a simple geometric model, referred to as the secant model, of backscatter coefficient anisotropy. Specifically, we evaluate anisotropy of the frequency dependence of the backscatter coefficient parameterized in terms of effective scatterer size. We assess the model in phantoms with known scattering sources and in a skeletal muscle, a well-known anisotropic tissue. We demonstrate that the secant model can determine the orientation of the anisotropic scatterers, as well as accurately determining effective scatterer sizes, and it may classify isotropic versus anisotropic scatterers. The secant model may find utility in monitoring disease progression as well as characterizing normal tissue architectures.
Asunto(s)
Músculo Esquelético , Transductores , Anisotropía , Ultrasonografía/métodos , Músculo Esquelético/diagnóstico por imagen , Fantasmas de ImagenRESUMEN
Apoptosis is triggered in the developing mammalian brain by sedative, anesthetic or antiepileptic drugs during late gestation and early life. Whether human children are vulnerable to this toxicity mechanism remains unknown, as there are no imaging techniques to capture it. Apoptosis is characterized by distinct structural features, which affect the way damaged tissue scatters ultrasound compared to healthy tissue. We evaluated whether apoptosis, triggered by the anesthetic sevoflurane in the brains of neonatal rhesus macaques, can be detected using quantitative ultrasound (QUS). Neonatal (nâ¯=â¯15) rhesus macaques underwent 5â¯h of sevoflurane anesthesia. QUS images were obtained through the sagittal suture at 0.5 and 6â¯h. Brains were collected at 8â¯h and examined immunohistochemically to analyze apoptotic neuronal and oligodendroglial death. Significant apoptosis was detected in white and gray matter throughout the brain, including the thalamus. We measured a change in the effective scatterer size (ESS), a QUS biomarker derived from ultrasound echo signals obtained with clinical scanners, after sevoflurane-anesthesia in the thalamus. Although initial inclusion of all measurements did not reveal a significant correlation, when outliers were excluded, the change in the ESS between the pre- and post-anesthesia measurements correlated strongly and proportionally with the severity of apoptotic death. We report for the first time in vivo changes in QUS parameters, which may reflect severity of apoptosis in the brains of infant nonhuman primates. These findings suggest that QUS may enable in vivo studies of apoptosis in the brains of human infants following exposure to anesthetics, antiepileptics and other brain injury mechanisms.
Asunto(s)
Apoptosis/fisiología , Encéfalo/diagnóstico por imagen , Sevoflurano/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Femenino , Macaca mulatta , Masculino , Neuronas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , UltrasonografíaRESUMEN
Clinical prediction and especially prevention of abnormal birth timing, particularly pre-term, is poor. The cervix plays a key role in birth timing; it first serves as a rigid barrier to protect the developing fetus, then becomes the pathway to delivery of that fetus. Imaging biomarkers to define this remodeling process could provide insights to improve prediction of birth timing and elucidate novel targets for preventive therapies. Quantitative ultrasound (QUS) approaches that appear promising for this purpose include shear wave speed (SWS) estimation to quantify softness, as well as parameters based on backscattered power, such as the mean backscattered power difference (mBSPD) and specific attenuation coefficient (SAC), to quantify the organization of tissue microstructure. Invasive studies in rodents demonstrated that as pregnancy advances, cervical microstructure disorganizes as tissue softness and compliance increase. Our non-invasive studies in pregnant women and rhesus macaques suggested that QUS can detect these microstructural changes in vivo. Our previous study in the same cohort showed a progressive decline in SWS during pregnancy, consistent with increasing tissue softness, and we hypothesized that backscatter parameters would also decrease, consistent with increasing microstructural disorganization. In this study, we analyzed the mBSPD and SAC in the cervices of rhesus macaques (nâ¯=â¯18). We found that both mBSPD and SAC decreased throughout pregnancy (p < 0.001 for both parameters) and that the former appears to be a more reliable biomarker. In summary, biomarkers that can characterize tissue microstructural organization are promising for comprehensive characterization of cervical remodeling in pregnancy.
Asunto(s)
Cuello del Útero/diagnóstico por imagen , Macaca mulatta , Procesamiento de Señales Asistido por Computador , Ultrasonografía/métodos , Animales , Biomarcadores , Estudios de Evaluación como Asunto , Femenino , EmbarazoRESUMEN
As pregnancy progresses, the cervix remodels from a rigid structure to one pliable enough to allow delivery of a fetus, a process that involves progressive disorganization of cervical microstructure. Quantitative ultrasound biomarkers that may detect this process include those derived from the backscattered echo signal, namely, acoustic attenuation and backscattered power loss. We recently reported that attenuation and backscattered power loss are affected by tissue anisotropy and heterogeneity in the ex vivo cervix. In this study, we compared attenuation and backscattered power difference in a group of women in early pregnancy (first trimester) with those in a group in late pregnancy (third trimester). We observed a significant decrease in the backscattered power difference in late as compared with early pregnancy, suggesting decreased microstructural organization in late pregnancy, a finding that is consistent with animal models of cervical remodeling. In contrast, we found no difference in attenuation between the time points. These results suggest that the backscattered power difference, but perhaps not attenuation, may be a useful clinical biomarker of cervical remodeling.
Asunto(s)
Cuello del Útero/anatomía & histología , Ultrasonografía/métodos , Acústica , Adulto , Biomarcadores , Cuello del Útero/diagnóstico por imagen , Cuello del Útero/fisiología , Estudios Transversales , Estudios de Evaluación como Asunto , Femenino , Humanos , Embarazo , UltrasonidoRESUMEN
Use of the reference phantom method for computing acoustic attenuation and backscatter is widespread. However, clinical application of these methods has been limited by the need to acquire reference phantom data. We determined that the data acquired from 11 transducers of the same model and five clinical ultrasound systems of the same model produce equivalent estimates of reference phantom power spectra. We describe that the contribution to power spectral density variance among systems and transducers equals that from speckle variance with 59 uncorrelated echo signals. Thus, when the number of uncorrelated lines of data is small, speckle variance will dominate the power spectral density estimate variance introduced by different systems and transducers. These results suggest that, at least for this particular transducer and imaging system combination, one set of reference phantom calibration data is highly representative of the average among equivalent transducers and systems that are in good working order.
Asunto(s)
Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador , Transductores , Ultrasonografía/métodos , Acústica , Reproducibilidad de los Resultados , UltrasonidoRESUMEN
Imaging biomarkers based on quantitative ultrasound can offer valuable information about properties that inform tissue function and behavior such as microstructural organization (e.g., collagen alignment) and viscoelasticity (i.e., compliance). For example, the cervix feels softer as its microstructure remodels during pregnancy, an increase in compliance that can be objectively quantified with shear wave speed and therefore shear wave speed estimation is a potential biomarker of cervical remodeling. Other proposed biomarkers include parameters derived from the backscattered echo signal, such as attenuation and backscattered power loss, because such parameters can provide insight into tissue microstructural alignment and organization. Of these, attenuation values for the pregnant cervix have been reported, but large estimate variance reduces their clinical value. That said, parameter estimates based on the backscattered echo signal may be incorrect if assumptions they rely on, such as tissue isotropy and homogeneity, are violated. For that reason, we explored backscatter and attenuation parameters as potential biomarkers of cervical remodeling via careful investigation of the assumptions of isotropy and homogeneity in cervical tissue. Specifically, we estimated the angle- and spatial-dependence of parameters of backscattered power and acoustic attenuation in the ex vivo human cervix, using the reference phantom method and electronic steering of the ultrasound beam. We found that estimates are anisotropic and spatially heterogeneous, presumably because the tissue itself is anisotropic and heterogeneous. We conclude that appropriate interpretation of imaging biomarkers of cervical remodeling must account for tissue anisotropy and heterogeneity.
Asunto(s)
Cuello del Útero/diagnóstico por imagen , Fantasmas de Imagen , Ultrasonografía/métodos , Anisotropía , Estudios de Evaluación como Asunto , Femenino , HumanosRESUMEN
Abnormal parturition, e.g. pre- or post-term birth, is associated with maternal and neonatal morbidity and increased economic burden. This could potentially be prevented by accurate detection of abnormal softening of the uterine cervix. Shear wave elasticity imaging (SWEI) techniques that quantify tissue softness, such as shear wave speed (SWS) measurement, are promising for evaluation of the cervix. Still, interpretation of results can be complicated by biological variability (i.e. spatial variations of cervix stiffness, parity), as well as by experimental factors (i.e. type of transducer, posture during scanning). Here we investigated the ability of SWEI to detect cervical softening, as well as sources of SWS variability that can affect this task, in the pregnant and nonpregnant Rhesus macaque. Specifically, we evaluated SWS differences when imaging the cervix transabdominally with a typical linear array abdominal transducer, and transrectally with a prototype intracavitary linear array transducer. Linear mixed effects (LME) models were used to model SWS as a function of menstrual cycle day (in nonpregnant animals) and gestational age (in pregnant animals). Other variables included parity, shear wave direction, and cervix side (anterior versus posterior). In the nonpregnant cervix, the LME model indicated that SWS increased by 2% (95% confidence interval 0-3%) per day, starting eight days before menstruation. During pregnancy, SWS significantly decreased at a rate of 6% (95% CI 5-7%) per week (intracavitary approach) and 3% (95% CI 2-4%) per week (transabdominal approach), and interactions between the scanning approach and other fixed effects were also significant. These results suggest that, while absolute SWS values are influenced by factors such as scanning approach and SWEI implementation, these sources of variability do not compromise the sensitivity of SWEI to cervical softening. Our results also highlight the importance of standardizing SWEI approaches to improve their accuracy for cervical assessment.
Asunto(s)
Maduración Cervical , Cuello del Útero/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Animales , Elasticidad , Fenómenos Electromagnéticos , Femenino , Edad Gestacional , Macaca mulatta , Modelos Animales , Embarazo , Preñez , SonidoRESUMEN
Acoustic properties can be exploited to infer and evaluate tissue microstructure. However, common assumptions are that the medium of interest is homogeneous and isotropic, and that its underlying physical properties cause diffuse scattering. In this paper, we describe how we developed and tested novel parameters designed to address isotropy/anisotropy in backscattered echo signal power in complex biological tissues. Specifically, we explored isotropy/anisotropy in backscattered power in isotropic phantoms (spherical glass beads), an anisotropic phantom (dialysis phantom with rodlike fibers), and an in vivo human tissue with well-described anisotropy (bicep muscle). Our approach uses the reference phantom method to compensate for system transfer and diffraction losses when electronically beamsteering a linear array transducer. We define three parameters to quantify the presence and orientation of anisotropic scatterers, as well as address magnitude of anisotropy. We found that these parameters can detect and sense the degree of anisotropy in backscatter in both phantoms and bicep muscle. Bias of the summary anisotropy parameters, induced through a speed of sound mismatch of sample media and reference phantom, was less than 0.2 dB if the speed of sound was within ±20 m/s of the sample media. In summary, these new parameters may be useful for testing the assumption of isotropy as well as providing more detailed information about the underlying microstructural sources of backscatter in complex biological tissues.
Asunto(s)
Fantasmas de Imagen , Ultrasonografía , Anisotropía , Humanos , Procesamiento de Imagen Asistido por Computador , Músculo Esquelético/diagnóstico por imagen , Procesamiento de Señales Asistido por Computador , Transductores , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Ultrasonografía/normasRESUMEN
Shear wave elasticity imaging has shown promise in evaluation of the pregnant cervix. Changes in shear wave group velocity have been attributed exclusively to changes in stiffness. This assumes homogeneity within the region of interest and purely elastic tissue behavior. However, the cervix is structurally/microstructurally heterogeneous and viscoelastic. We therefore developed strategies to investigate these complex tissue properties. Shear wave elasticity imaging was performed ex vivo on 14 unripened and 13 misoprostol-ripened cervix specimens from rhesus macaques. After tests of significant and uniform shear wave displacement, as well as reliability of estimates, group velocity decreased significantly from the distal (vaginal) to proximal (uterine) end of unripened, but not ripened, specimens. Viscosity was quantified by the slope of the phase velocity versus frequency. Dispersion was observed in both groups (median: 5.5 m/s/kHz, interquartile range: 1.5-12.0 m/s/kHz), also decreasing toward the proximal cervix. This work suggests that comprehensive assessment of complex tissues such as cervix requires consideration of structural heterogeneity and viscosity.
Asunto(s)
Cuello del Útero/anatomía & histología , Diagnóstico por Imagen de Elasticidad/métodos , Animales , Cuello del Útero/diagnóstico por imagen , Femenino , Macaca mulatta , Modelos Animales , Reproducibilidad de los Resultados , ViscosidadRESUMEN
Cervical softness is a critical parameter in pregnancy. Clinically, preterm birth is associated with premature cervical softening and postdates birth is associated with delayed cervical softening. In practice, the assessment of softness is subjective, based on digital examination. Fortunately, objective, quantitative techniques to assess softness, and other parameters associated with microstructural cervical change are emerging. One of these is shear wave speed (SWS) estimation. In principle, this allows objective characterization of stiffness because waves travel more slowly in softer tissue. We are studying SWS in humans and rhesus macaques, the latter in order to accelerate translation from bench to bedside. For the current study, we estimated SWS in ex vivo cervices of rhesus macaques, n=24 nulliparous (never given birth) and n=9 multiparous (delivered at least one baby). Misoprostol (a prostaglandin used to soften human cervices prior to gynecological procedures) was administered to 13 macaques prior to necropsy (nulliparous: 7; multiparous: 6). SWS measurements were made at predetermined locations from the distal to proximal end of the cervix on both the anterior and posterior cervix, with five repeat measures at each location. The intent was to explore macaque cervical microstructure, including biological and spatial variability, to elucidate the similarities and differences between the macaque and the human cervix in order to facilitate future in vivo studies. We found that SWS is dependent on location in the normal nonpregnant macaque cervix, as in the human cervix. Unlike the human cervix, we detected no difference between ripened and unripened rhesus macaque cervix samples, nor nulliparous versus multiparous samples, although we observed a trend toward stiffer tissue in nulliparous samples. We found rhesus macaque cervix to be much stiffer than human, which is important for technique refinement. These findings are useful for guiding study of cervical microstructure in both humans and macaques.