Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890975

RESUMEN

Sleep disorders are a growing threat nowadays as they are linked to neurological, cardiovascular and metabolic diseases. The gold standard methodology for sleep study is polysomnography (PSG), an intrusive and onerous technique that can disrupt normal routines. In this perspective, m-Health technologies offer an unobtrusive and rapid solution for home monitoring. We developed a multi-scale method based on motion signal extracted from an unobtrusive device to evaluate sleep behavior. Data used in this study were collected during two different acquisition campaigns by using a Pressure Bed Sensor (PBS). The first one was carried out with 22 subjects for sleep problems, and the second one comprises 11 healthy shift workers. All underwent full PSG and PBS recordings. The algorithm consists of extracting sleep quality and fragmentation indexes correlating to clinical metrics. In particular, the method classifies sleep windows of 1-s of the motion signal into: displacement (DI), quiet sleep (QS), disrupted sleep (DS) and absence from the bed (ABS). QS proved to be positively correlated (0.72±0.014) to Sleep Efficiency (SE) and DS/DI positively correlated (0.85±0.007) to the Apnea-Hypopnea Index (AHI). The work proved to be potentially helpful in the early investigation of sleep in the home environment. The minimized intrusiveness of the device together with a low complexity and good performance might provide valuable indications for the home monitoring of sleep disorders and for subjects' awareness.


Asunto(s)
Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Humanos , Polisomnografía , Sueño , Calidad del Sueño
2.
Artículo en Inglés | MEDLINE | ID: mdl-26737214

RESUMEN

The sleep phenomenon is a complex process that involves fluctuations of autonomic functions such as the blood pressure, temperature and brain function. These fluctuations change their properties through the different sleep stages with specific relations among the different systems. In order to understand the relation between the cardiovascular and central nervous system at the different sleep stages, we applied different non-linear methods to the energy of electroencephalographic signal (EEG) and the heart rate fluctuations. The EEG was divided in the Delta, Theta, Alpha and Beta frequency bands and the mean energy of these bands was computed at each heart rate interval. Thus, the non-linear relation was evaluated between the energy of the EEG bands and the heart rate fluctuations using Cross-Correlation, Cross-Sample Entropy and Recurrence Quantification Analysis in segments of 5 minutes grouped by sleep stage. The results showed that a relation exists between the changes of the energy in the Delta band and the Heart rate fluctuations.


Asunto(s)
Sistema Nervioso Central/fisiología , Electroencefalografía , Frecuencia Cardíaca , Corazón/fisiología , Fases del Sueño/fisiología , Adulto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...