Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(7): e0011879, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991038

RESUMEN

BACKGROUND: Plasmodium vivax is the most predominant malaria species in Latin America, constituting 71.5% of malaria cases in 2021. With several countries aiming for malaria elimination, it is crucial to prioritize effectiveness of national control programs by optimizing the utilization of available resources and strategically implementing necessary changes. To support this, there is a need for innovative approaches such as genomic surveillance tools that can investigate changes in transmission intensity, imported cases and sources of reintroduction, and can detect molecular markers associated with drug resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we apply a modified highly-multiplexed deep sequencing assay: Pv AmpliSeq v2 Peru. The tool targets a newly developed 41-SNP Peru barcode for parasite population analysis within Peru, the 33-SNP vivaxGEN-geo panel for country-level classification, and 11 putative drug resistance genes. It was applied to 230 samples from the Peruvian Amazon (2007-2020), generating baseline surveillance data. We observed a heterogenous P. vivax population with high diversity and gene flow in peri-urban areas of Maynas province (Loreto region) with a temporal drift using all SNPs detected by the assay (nSNP = 2909). In comparison, in an indigenous isolated area, the parasite population was genetically differentiated (FST = 0.07-0.09) with moderate diversity and high relatedness between isolates in the community. In a remote border community, a clonal P. vivax cluster was identified, with distinct haplotypes in drug resistant genes and ama1, more similar to Brazilian isolates, likely representing an introduction of P. vivax from Brazil at that time. To test its applicability for Latin America, we evaluated the SNP Peru barcode in P. vivax genomes from the region and demonstrated the capacity to capture local population clustering at within-country level. CONCLUSIONS/SIGNIFICANCE: Together this data shows that P. vivax transmission is heterogeneous in different settings within the Peruvian Amazon. Genetic analysis is a key component for regional malaria control, offering valuable insights that should be incorporated into routine surveillance.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Polimorfismo de Nucleótido Simple , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Plasmodium vivax/clasificación , Perú/epidemiología , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Humanos , Resistencia a Medicamentos/genética , Genoma de Protozoos , Secuenciación de Nucleótidos de Alto Rendimiento , Monitoreo Epidemiológico , Genómica
2.
J Travel Med ; 31(3)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38157311

RESUMEN

BACKGROUND: Failure of artemisinin-based combination therapy is increasingly reported in patients with Plasmodium falciparum malaria in sub-Saharan Africa. We aimed to describe the clinical and genomic characteristics of recent cases of P. falciparum malaria failing artemether-lumefantrine in Belgium. METHODS: Travel-related cases of malaria confirmed at the national reference laboratory of the Institute of Tropical Medicine, Antwerp, Belgium, were reviewed. All cases for which attending clinicians reported persistence (beyond Day 3 post-treatment initiation, i.e. early failure) or recrudescence (from Day 7 to 42, i.e. late failure) of P. falciparum parasites despite adequate drug intake were analysed. Both initial and persistent/recurrent samples were submitted to next generation sequencing to investigate resistance-conferring mutations. RESULTS: From July 2022 to June 2023, eight P. falciparum cases of failure with artemether-lumefantrine therapy were reported (early failure = 1; late failure = 7). All travellers were returning from sub-Saharan Africa, most (6/8) after a trip to visit friends and relatives. PfKelch13 (PF3D7_1343700) mutations associated with resistance to artemisinin were found in two travellers returning from East Africa, including the validated marker R561H in the patient with early failure and the candidate marker A675V in a patient with late failure. Additional mutations were detected that could contribute to decreased susceptibility to artemisinin in another three cases, lumefantrine in six cases and proguanil in all eight participants. Various regimens were used to treat the persistent/recrudescent cases, with favourable outcome. CONCLUSION: Within a 12-month period, we investigated eight travellers returning from sub-Saharan Africa with P. falciparum malaria and in whom artemether-lumefantrine failure was documented. Mutations conferring resistance to antimalarials were found in all analysed blood samples, especially against lumefantrine and proguanil, but also artemisinin. There is a pressing need for systematic genomic surveillance of resistance to antimalarials in international travellers with P. falciparum malaria, especially those experiencing treatment failure.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Arteméter/farmacología , Combinación Arteméter y Lumefantrina/farmacología , Artemisininas/farmacología , Bélgica , Combinación de Medicamentos , Genómica , Lumefantrina/farmacología , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Proguanil/farmacología , Viaje , Enfermedad Relacionada con los Viajes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...