Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(7): 071101, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26943524

RESUMEN

The latest IceCube data suggest that the all-flavor cosmic neutrino flux may be as large as 10^{-7} GeV cm^{-2} s^{-1} sr^{-1} around 30 TeV. We show that, if sources of the TeV-PeV neutrinos are transparent to γ rays with respect to two-photon annihilation, strong tensions with the isotropic diffuse γ-ray background measured by Fermi are unavoidable, independently of the production mechanism. We further show that, if the IceCube neutrinos have a photohadronic (pγ) origin, the sources are expected to be opaque to 1-100 GeV γ rays. With these general multimessenger arguments, we find that the latest data suggest a population of cosmic-ray accelerators hidden in GeV-TeV γ rays as a neutrino origin. Searches for x-ray and MeV γ-ray counterparts are encouraged, and TeV-PeV neutrinos themselves will serve as special probes of dense source environments.

2.
Philos Trans A Math Phys Eng Sci ; 365(1854): 1235-40, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17293339

RESUMEN

We present here the analysis of the early and late multiwavelength afterglow emission, as observed by Swift a small robotic telescope and very large telescope (VLT). We compare early observations with late afterglow observations obtained with Swift and the VLT and we observe an intense rebrightening in the optical band at about 1 day after the burst, which is not present in the X-ray band. The lack of detection in X-ray of such a strong rebrightening at lower energies may be described with a variable external density profile. In such a scenario, the combined X-ray and optical observations allow us to derive that the matter density located at approximately 1017 cm from the burst is approximately a factor of 10 higher than in the inner region. This is the first time in which a rebrightening has been observed in the optical afterglow of a gamma-ray burst that is clearly absent in the X-ray afterglow.

3.
Phys Rev Lett ; 90(20): 201103, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12785881

RESUMEN

The supranova model for gamma-ray bursts (GRBs) is becoming increasingly more popular. In this scenario the GRB occurs weeks to years after a supernova explosion, and is located inside a pulsar wind bubble (PWB). Protons accelerated in the internal shocks that emit the GRB may interact with the external PWB photons producing pions which decay into approximately 10(16) eV neutrinos. A km(2) neutrino detector would observe several events per year correlated with the GRBs.

4.
Phys Rev Lett ; 90(19): 191102, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12785937

RESUMEN

The supranova model for gamma-ray bursts (GRBs) has recently gained popularity. In this scenario the GRB occurs weeks to years after a supernova explosion, and is located inside a pulsar wind bubble (PWB). High energy protons from the PWB can interact with photons from the rich radiation field inside the PWB or collide with cold protons from the supernova remnant, producing pions which decay into approximately 10-10(3) TeV neutrinos. The predicted neutrino flux from the PWBs that host the GRBs should be easily detectable by planned 1 km(2) detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...