RESUMEN
Proteomics has been little used for the identification of novel prognostic and/or therapeutic markers in isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GB). In this study, we analyzed 50 tumor and 30 serum samples from short- and long-term survivors of IDH-wildtype GB (STS and LTS, respectively) by data-independent acquisition mass spectrometry (DIA-MS)-based proteomics, with the aim of identifying such markers. DIA-MS identified 5422 and 826 normalized proteins in tumor and serum samples, respectively, with only three tumor proteins and 26 serum proteins displaying significant differential expression between the STS and LTS groups. These dysregulated proteins were principally associated with the detoxification of reactive oxygen species (ROS). In particular, GB patients in the STS group had high serum levels of malate dehydrogenase 1 (MDH1) and ribonuclease inhibitor 1 (RNH1) and low tumor levels of fatty acid-binding protein 7 (FABP7), which may have enabled them to maintain low ROS levels, counteracting the effects of the first-line treatment with radiotherapy plus concomitant and adjuvant temozolomide. A blood score built on the levels of MDH1 and RNH1 expression was found to be an independent prognostic factor for survival based on the serum proteome data for a cohort of 96 IDH-wildtype GB patients. This study highlights the utility of circulating MDH1 and RNH1 biomarkers for determining the prognosis of patients with IDH-wildtype GB. Furthermore, the pathways driven by these biomarkers, and the tumor FABP7 pathway, may constitute promising therapeutic targets for blocking ROS detoxification to overcome resistance to chemoradiotherapy in potential GB STS.
RESUMEN
Triple negative breast cancer (TNBC) is an aggressive malignancy for which chemotherapy remains the standard treatment. However, between 3 and 5 years after chemotherapy, about half patients will relapse and it is essential to identify vulnerabilities of cancer cells surviving neoadujuvant therapy. In this study, we established persistent TNBC cell models after treating MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide, and then with paclitaxel, for a total of 18 weeks. The resulting chemo-persistent cell lines were more proliferative, both in vitro and in xenografted mice. Interestingly, MDA-MB-231 persistent cells became less sensitive to chemotherapeutic drugs, whereas SUM159-PT persistent cells kept similar sensitivity compared to control cells. The reduced sensitivity to chemotherapy in MDA-MB-231 persistent cells was found to be associated with an increased oxidative phosphorylation (OXPHOS) and modified levels of tricarboxylic acid cycle (TCA) intermediates. Integration of data from proteomics and metabolomics demonstrated TCA cycle among the most upregulated pathways in MDA-MB-231 persistent cells. The absence of glucose and pyruvate impeded OXPHOS in persistent cells, while the absence of glutamine did not. In contrast, OXPHOS was not modified in control cells independently of TCA substrates, indicating that MDA-MB-231 persistent cells evolved towards a more pyruvate dependent profile. Finally, the inhibition of pyruvate entry into mitochondria with UK-5099 reduced OXPHOS and re-sensitized persistent cells to therapeutic agents. Together, these findings suggest that targeting mitochondrial pyruvate metabolism may help to overcome mitochondrial adaptation of chemo-persistent TNBC.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Paclitaxel/farmacología , Mitocondrias/metabolismo , Piruvatos , Proliferación CelularRESUMEN
Cross-species investigations of cancer invasiveness are a new approach that has already identified new biomarkers which are potentially useful for improving tumor diagnosis and prognosis in clinical medicine and veterinary science. In this study, we combined proteomic analysis of four experimental rat malignant mesothelioma (MM) tumors with analysis of ten patient-derived cell lines to identify common features associated with mitochondrial proteome rewiring. A comparison of significant abundance changes between invasive and non-invasive rat tumors gave a list of 433 proteins, including 26 proteins reported to be exclusively located in mitochondria. Next, we analyzed the differential expression of genes encoding the mitochondrial proteins of interest in five primary epithelioid and five primary sarcomatoid human MM cell lines; the most impressive increase was observed in the expression of the long-chain acyl coenzyme A dehydrogenase (ACADL). To evaluate the role of this enzyme in migration/invasiveness, two epithelioid and two sarcomatoid human MM cell lines derived from patients with the highest and lowest overall survival were studied. Interestingly, sarcomatoid vs. epithelioid cell lines were characterized by higher migration and fatty oxidation rates, in agreement with ACADL findings. These results suggest that evaluating mitochondrial proteins in MM specimens might identify tumors with higher invasiveness. Data are available via ProteomeXchange with the dataset identifier PXD042942.
RESUMEN
Curcumin exhibits both immunomodulatory properties and anticarcinogenic effects which have been investigated in different experimental tumor models and cancer types. Its interactions with multiple signaling pathways have been documented through proteomic studies on malignant cells in culture; however, in vivo approaches are scarce. In this study, we used a rat model of highly invasive peritoneal mesothelioma to analyze the residual tumor proteomes of curcumin-treated rats in comparison with untreated tumor-bearing rats (G1) and provide insights into the modifications in the tumor microenvironment/malignant cell crosstalk. The cross-comparing analyses of the histological sections of residual tumors from two groups of rats given curcumin twice on days 21 and 26 after the tumor challenge (G2) or four times on days 7, 9, 11 and 14 (G3), in comparison with G1, identified a common increase in caveolin-1 which linked with significant abundance changes affecting 115 other proteins. The comparison of G3 vs. G2 revealed additional features for 65 main proteins, including an increase in histidine-rich glycoprotein and highly significant abundance changes for 22 other proteins regulating the tumor microenvironment, linked with the presence of numerous activated T cells. These results highlight new features in the multiple actions of curcumin on tumor microenvironment components and cancer cell invasiveness.
Asunto(s)
Curcumina , Mesotelioma Maligno , Mesotelioma , Ratas , Animales , Curcumina/farmacología , Proteoma , Neoplasia Residual , Proteómica , Mesotelioma/tratamiento farmacológico , Mesotelioma/metabolismo , Microambiente TumoralRESUMEN
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host's immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
RESUMEN
Among the different chemotherapies available, genotoxic drugs are widely used. In response to these drugs, particularly doxorubicin, tumor cells can enter into senescence. Chemotherapyinduced senescence (CIS) is a complex response. Long described as a definitive arrest of cell proliferation, the present authors and various groups have shown that this state may not be complete and could allow certain cells to reproliferate. The mechanism could be due to the activation of new signaling pathways. In the laboratory, the proteins involved in these pathways and triggering cell proliferation were studied. The present study determined a new role for anterior gradient protein 2 (AGR2) in vivo in patients and in vitro in a senescence escape model. AGR2's implication in breast cancer patients and proliferation of senescent cells was assessed based on a SWATHMS proteomic study of patients' samples and RNA interference technology on cell lines. First, AGR2 was identified and it was found that its concentration is higher in the serum of patients with breast cancer and that this high concentration is associated with metastasis occurrence. An inverse correlation between intratumoral AGR2 expression and the senescence marker p16 was also observed. This observation led to the study of the role of AGR2 in the CIS escape model. In this model, it was found that AGR2 is overexpressed in cells during senescence escape and that its loss considerably reduces this phenomenon. Furthermore, it was shown that the extracellular form of AGR2 stimulated the reproliferation of senescent cells. The power of proteomic analysis based on the SWATHMS approach allowed the present study to highlight the mammalian target of rapamycin (mTOR)/AKT signaling pathway in the senescence escape mechanism mediated by AGR2. Analysis of the two signaling pathways revealed that AGR2 modulated RICTOR and AKT phosphorylation. All these results showed that AGR2 expression in sera and tumors of breast cancer patients is a marker of tumor progression and metastasis occurrence. They also showed that its overexpression regulates CIS escape via activation of the mTOR/AKT signaling pathway.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Senescencia Celular/genética , Mucoproteínas/análisis , Proteínas Oncogénicas/análisis , Biomarcadores/análisis , Biomarcadores/sangre , Neoplasias de la Mama/genética , Línea Celular Tumoral/citología , Línea Celular Tumoral/metabolismo , Senescencia Celular/fisiología , Quimioterapia/normas , Quimioterapia/estadística & datos numéricos , Femenino , Humanos , Mucoproteínas/sangre , Proteínas Oncogénicas/sangreRESUMEN
Oncogenes or chemotherapy treatments trigger the induction of suppressive pathways such as apoptosis or senescence. Senescence was initially defined as a definitive arrest of cell proliferation but recent results have shown that this mechanism is also associated with cancer progression and chemotherapy resistance. Senescence is therefore much more heterogeneous than initially thought. How this response varies is not really understood, it has been proposed that its outcome relies on the secretome of senescent cells and on the maintenance of their epigenetic marks. Using experimental models of senescence escape, we now described that the stability of this proliferative arrest relies on specific tRNAs and aminoacyl-tRNA synthetases. Following chemotherapy treatment, the DNA binding of the type III RNA polymerase was reduced to prevent tRNA transcription and induce a complete cell cycle arrest. By contrast, during senescence escape, specific tRNAs such as tRNA-Leu-CAA and tRNA-Tyr-GTA were up-regulated. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition through BRF1 depletion maintained senescence and blocked the generation of escaping cells. mTOR inhibition also prevented chemotherapy-induced senescence escape in association with a reduction of tRNA-Leu-CAA and tRNA-Tyr-GTA expression. Further confirming the role of the tRNA-Leu-CAA and tRNA-Tyr-GTA, results showed that their corresponding tRNA ligases, LARS and YARS, were necessary for senescence escape. This effect was specific since the CARS ligase had no effect on persistence. By contrast, the down-regulation of LARS and YARS reduced the emergence of persistent cells and this was associated with the modulation of E2F1 target genes expression. Overall, these findings highlight a new regulation of tRNA biology during senescence and suggest that specific tRNAs and ligases contribute to the strength and heterogeneity of this tumor suppressive pathway.
Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Senescencia Celular/genética , Factor de Transcripción E2F1/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Serina-Treonina Quinasas TOR/genética , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , ARN Polimerasa III/genética , ARN de Transferencia/biosíntesis , ARN de Transferencia/genética , Transcripción Genética/genéticaRESUMEN
This study aimed to identify the proteomic changes produced by curcumin treatment following stimulation of the host immune system in a rat model of malignant mesothelioma. We analyzed the proteomes of secondary lymphoid organs from four normal rats, four untreated tumor-bearing rats, and four tumor-bearing rats receiving repeated intraperitoneal administrations of curcumin. Cross-comparing proteome analyses of histological sections of the spleen from the three groups first identified a list of eighty-three biomarkers of interest, thirteen of which corresponded to proteins already reported in the literature and involved in the anticancer therapeutic effects of curcumin. In a second step, comparing these data with proteomic analyses of histological sections of mesenteric lymph nodes revealed eight common biomarkers showing a similar pattern of changes in both lymphoid organs. Additional findings included a partial reduction of the increase in spleen-circulating biomarkers, a decrease in C-reactive protein and complement C3 in the spleen and lymph nodes, and an increase in lymph node purine nucleoside phosphorylase previously associated with liver immunodeficiency. Our results suggest some protein abundance changes could be related to the systemic, distant non-target antitumor effects produced by this phytochemical.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Curcumina/farmacología , Ganglios Linfáticos/metabolismo , Mesotelioma , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales , Neoplasias Peritoneales , Proteoma/metabolismo , Animales , Masculino , Mesotelioma/tratamiento farmacológico , Mesotelioma/metabolismo , Mesotelioma/patología , Invasividad Neoplásica , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/patología , Ratas , Ratas Endogámicas F344RESUMEN
Investigations of liver metastatic colonization suggest that the microenvironment is preordained to be intrinsically hospitable to the invasive cancer cells. To identify molecular determinants of that organotropism and potential therapeutic targets, we conducted proteomic analyses of the liver in an aggressive model of sarcomatoid peritoneal mesothelioma (M5-T1). The quantitative changes between SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra) proteotype patterns of the liver from normal rats (G1), adjacent non-tumorous liver from untreated tumor-bearing rats (G2), and liver from curcumin-treated rats without hepatic metastases (G3) were compared. The results identified 12 biomarkers of raised immune response against M5-T1 cells in G3 and 179 liver biomarker changes in (G2 vs. G1) and (G3 vs. G2) but not in (G3 vs. G1). Cross-comparing these 179 candidates with proteins showing abundance changes related to increasing invasiveness in four different rat mesothelioma tumor models identified seven biomarkers specific to the M5-T1 tumor. Finally, analysis of correlations between these seven biomarkers, purine nucleoside phosphorylase being the main biomarker of immune response, and the 179 previously identified proteins revealed a network orchestrating liver colonization and treatment efficacy. These results highlight the links between potential targets, raising interesting prospects for optimizing therapies against highly invasive cancer cells exhibiting a sarcomatoid phenotype and sarcoma cells.
RESUMEN
Malignant mesothelioma (MM) still represents a devastating disease that is often detected too late, while the current effect of therapies on patient outcomes remains unsatisfactory. Invasiveness biomarkers may contribute to improving early diagnosis, prognosis, and treatment for patients, a task that could benefit from the development of high-throughput proteomics. To limit potential sources of bias when identifying such biomarkers, we conducted cross-species proteomic analyzes on three different MM sources. Data were collected firstly from two human MM cell lines, secondly from rat MM tumors of increasing invasiveness grown in immunocompetent rats and human MM tumors grown in immunodeficient mice, and thirdly from paraffin-embedded sections of patient MM tumors of the epithelioid and sarcomatoid subtypes. Our investigations identified three major invasiveness biomarkers common to the three tumor sources, CAPG, FABP4, and LAMB2, and an additional set of 25 candidate biomarkers shared by rat and patient tumors. Comparing the data to proteomic analyzes of preneoplastic and neoplastic rat mesothelial cell lines revealed the additional role of SBP1 in the carcinogenic process. These observations could provide new opportunities to identify highly vulnerable MM patients with poor survival outcomes, thereby improving the success of current and future therapeutic strategies.
RESUMEN
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffinembedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias/diagnóstico , Proteómica/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Invasividad Neoplásica/patología , Neoplasias/patologíaRESUMEN
Recent findings suggest that S100A4, a protein involved in communication between stromal cells and cancer cells, could be more involved than previously expected in cancer invasiveness. To investigate its cumulative value in the multistep process of the pathogenesis of malignant mesothelioma (MM), SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra), an advanced and robust technique of quantitative proteomics, was used to analyze a collection of 26 preneoplastic and neoplastic rat mesothelial cell lines and models of MM with increasing invasiveness. Secondly, proteomic and histological analyses were conducted on formalin-fixed paraffin-embedded sections of liver metastases vs. primary tumor, and spleen from tumor-bearing rats vs. controls in the most invasive MM model. We found that S100A4, along with 12 other biomarkers, differentiated neoplastic from preneoplastic mesothelial cell lines, and invasive vs. non-invasive tumor cells in vitro, and MM tumors in vivo. Additionally, S100A4 was the only protein differentiating preneoplastic mesothelial cell lines with sarcomatoid vs. epithelioid morphology in relation to EMT (epithelial-to-mesenchymal transition). Finally, S100A4 was the most significantly increased biomarker in liver metastases vs. primary tumor, and in the spleen colonized by MM cells. Overall, we showed that S100A4 was the only protein that showed increased abundance in all situations, highlighting its crucial role in all stages of MM pathogenesis.
RESUMEN
Senescence is activated in response to chemotherapy to prevent the propagation of cancer cells. In transformed cells, recent studies have shown that this response is not always definitive and that persistent populations can use senescence as an adaptive pathway to restart proliferation and become more aggressive. Here we discuss the results showing that an incomplete and heterogeneous senescence response plays a key role in chemotherapy resistance. Surviving to successive chemotherapy regimens, chronically existing senescent cells can create a survival niche through paracrine cooperations with neighboring cells. This favors chemotherapy escape of premalignant clones but might also allow the survival of adjacent clones presenting a lower fitness. A better characterization of senescence heterogeneity in transformed cells is therefore necessary. This will help us to understand this incomplete response to therapy and how it could generate clones with increased tumor capacity leading to disease relapse.
Asunto(s)
Antineoplásicos/farmacología , Senescencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Recurrencia Local de Neoplasia , Neoplasias/tratamiento farmacológico , Proteínas Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Senescencia Celular/genética , Senescencia Celular/fisiología , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Humanos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Proteínas Oncogénicas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Human olfactomedin-4 (OLFM4) is a secreted protein involved in a variety of cellular functions including proliferation, differentiation, apoptosis, and cell adhesion. OLFM4 expression has been studied in several tumor types including gastric, colorectal, lung, and endometrioid cancers where it has been suggested to be an independent favorable or unfavorable prognostic marker. For breast cancer, the clinical significance of OLFM4 is still unclear. In the present study, SWATH-MS is used as a tool for the robust identification and quantification of breast tissue proteins. SWATH-MS data show that OLFM4 expression is higher in DCIS than in invasive breast cancer. In-depth analysis of the breast tumor proteome show that OLFM4 is a favorable pronostic marker. Serum OLFM4 levels in peripheral blood are also analyzed by ELISA in 825 cases, including 94 cases of healthy individuals, 61 cases of non-invasive breast tumor (DCIS) and 670 cases of breast cancer (BC). It is found that serum OLFM4 levels are significantly higher in the DCIS cohort and in the breast cancer cohort compared with the healthy controls. This result suggests that circulating OLFM4 could be an interesting biomarker of early breast cancer. Data are available via ProteomeXchange with identifier PXD014194.
Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Proteómica , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Carcinoma Ductal de Mama/sangre , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/inmunología , Línea Celular Tumoral , Estudios de Cohortes , Femenino , Regulación Neoplásica de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos/sangre , Factor Estimulante de Colonias de Granulocitos/genética , Humanos , Invasividad Neoplásica , Lesiones Precancerosas/patología , PronósticoRESUMEN
Heterogeneity and lack of targeted therapies represent the two main impediments to precision treatment of triple-negative breast cancer (TNBC). Therefore, molecular subtyping and identification of therapeutic pathways are required to optimize medical care. The aim of the present study is to define robust TNBC subtypes with clinical relevance by means of proteomics and transcriptomics. As a first step, unsupervised analyses are conducted in parallel on proteomics and transcriptomics data of 83 TNBC tumors. Proteomics data unsupervised analysis did not permit separation of TNBC into different subtypes, whereas transcriptomics data are able to clearly and robustly identify three subtypes: molecular apocrine (C1), basal-like immune-suppressed (C2), and basal-like immune response (C3). Supervised analysis of proteomics data are then conducted based on transcriptomics subtyping. Thirty out of 62 proteins differentially expressed between C1, C2, and C3 belonged to biological categories which characterized these TNBC clusters: luminal and androgen-regulated proteins (C1), basal, invasion, and extracellular matrix (C2), and basal and immune response (interferon pathway and immunoglobulins) (C3). Although proteomics unsupervised analysis of TNBC tumors is unsuccessful at identifying clusters, the integrated approach is promising. Identification and measurement of 30 proteins strengthen subtyping of TNBC based on robust transcriptomics unsupervised analysis.
Asunto(s)
Proteínas de Neoplasias/genética , Proteómica , Transcriptoma/genética , Neoplasias de la Mama Triple Negativas/genética , Andrógenos/genética , Andrógenos/metabolismo , Biomarcadores de Tumor/clasificación , Biomarcadores de Tumor/genética , Biología Computacional , Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas de Neoplasias/clasificación , Neoplasias de la Mama Triple Negativas/clasificación , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
In primary cells, senescence induces a permanent proliferative arrest to prevent the propagation of malignant cells. However, the outcome of senescence is more complex in advanced cancer cells where senescent states are heterogeneous. Here, this heterogeneity is discussed and it is proposed that proteomic analysis should be used to identify specific signatures of cancer cells that use this pathway as an adaptive mechanism. Since senescent cells produce an inflammatory secretome, MRM approaches and quantification with internal standards might be particularly suited to follow the expression of the corresponding markers in body fluids. Used in combination with imaging medical technics, a better characterization of senescence heterogeneity should help to monitor the response to chemotherapy treatment.
Asunto(s)
Senescencia Celular/genética , Genes ras/genética , Neoplasias/genética , Proteómica , Ensamble y Desensamble de Cromatina/genética , Daño del ADN/genética , Heterogeneidad Genética , Humanos , Transducción de Señal/genéticaRESUMEN
Senescence is a tumor-suppressive mechanism induced by telomere shortening, oncogenes, or chemotherapy treatment. Although it is clear that this suppressive pathway leads to a permanent arrest in primary cells, this might not be the case in cancer cells that have inactivated their suppressive pathways. We have recently shown that subpopulations of cells can escape chemotherapy-mediated senescence and emerge as more transformed cells that induce tumor formation, resist anoikis, and are more invasive. In this study, we characterized this emergence and showed that senescent cells favor tumor growth and metastasis, in vitro and in vivo. Senescence escape was regulated by secreted proteins produced during emergence. Among these, we identified thrombospondin-1 (TSP1), a protein produced by senescent cells that prevented senescence escape. Using SWATH quantitative proteomic analysis, we found that TSP1 can be detected in the serum of patients suffering from triple-negative breast cancer and that its low expression was associated with treatment failure. The results also indicate that senescence escape is explained by the emergence of CD47low cells that express a reduced level of CD47, the TSP1 receptor. The results show that CD47 expression is regulated by p21waf1. The cell cycle inhibitor was sufficient to maintain senescence since its downregulation in senescent cells increased cell emergence. This leads to the upregulation of Myc, which then binds to the CD47 promoter to repress its expression, allowing the generation of CD47low cells that escape the suppressive arrest. Altogether, these results uncovered a new function for TSP1 and CD47 in the control of chemotherapy-mediated senescence.
Asunto(s)
Antígeno CD47/metabolismo , Trombospondina 1/metabolismo , Animales , Senescencia Celular , Humanos , RatonesRESUMEN
Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses of four original models of rat SM revealed their increasing infiltrative and metastatic potential were associated with differences in Ki67 index, blood-vessel density, and T-lymphocyte and macrophage infiltration. In comparison with the noninvasive tumor M5-T2, proteomic analysis demonstrated the three invasive tumors F4-T2, F5-T1 and M5-T1 shared in common a very significant increase in the abundance of the multifunctional proteins galectin-3, prohibitin and annexin A5, and a decrease in proteins involved in cell adhesion, tumor suppression, or epithelial differentiation. The increased metastatic potential of the F5-T1 tumor, relative to F4-T2, was associated with an increased macrophage vs T-cell infiltrate, changes in the levels of expression of a panel of cytokine genes, an increased content of proteins involved in chromatin organization, ribosome structure, splicing, or presenting anti-adhesive properties, and a decreased content of proteins involved in protection against oxidative stress, normoxia and intracellular trafficking. The most invasive tumor, M5-T1, was characterized by a pattern of specific phenotypic and molecular features affecting the presentation of MHC class I-mediated antigens and immune cell infiltration, or involved in the reorganization of the cytoskeleton and composition of the extracellular matrix. These four preclinical models and data represent a new resource available to the cancer research community to catalyze further investigations on invasiveness.
RESUMEN
Senescence is a tumor suppressive mechanism that induces a permanent proliferative arrest in response to an oncogenic insult or to the genotoxic stress induced by chemotherapy. We have recently described that some cells can escape this arrest, either because senescence was incomplete or as a consequence of a phenotypic adaptation. Malignant cells which resisted senescence emerged as more transformed cells that resist anoikis and rely on survival pathways activated by Akt and Mcl-1. In this study, we further characterize senescence escape, investigating how emergent cells could reproliferate. During the initial step of chemotherapy-induced senescence (CIS), we found that cyclin D1 was upregulated and that cell emergence was prevented when its main partner cdk4 was inactivated. Results indicate that this kinase induced the upregulation of the EZH2 methylase, a component of the polycomb PRC2 complex. Downregulated during the early step of treatment, the methylase was reactivated in clones that escaped senescence. The inactivation of EZH2, either by siRNA or by specific inhibitors, led to a specific inhibition of cell emergence. We used quantitative proteomic analysis to identify new targets of the methylase involved in senescence escape. We identified proteins involved in receptor endocytosis and described new functions for the AP2M1 protein in the control of chemotherapy-mediated senescence. Our results indicate that AP2M1 is involved in the transmission of secreted signals produced by senescent cells, suggesting that this pathway might regulate specific receptors involved in the control of CIS escape. In light of these results, we therefore propose that the cdk4-EZH2-AP2M1 pathway plays an important role during chemotherapy resistance and senescence escape. Since targeted therapies are available against these proteins, we propose that they should be tested in the treatment of colorectal or breast cancers that become resistant to first-line genotoxic therapies.